Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(9): 092501, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37721823

RESUMO

The last proton bound calcium isotope ^{35}Ca has been studied for the first time, using the ^{37}Ca(p,t)^{35}Ca two neutron transfer reaction. The radioactive ^{37}Ca nuclei, produced by the LISE spectrometer at GANIL, interacted with the protons of the liquid hydrogen target CRYPTA, to produce tritons t that were detected in the MUST2 detector array, in coincidence with the heavy residues Ca or Ar. The atomic mass of ^{35}Ca and the energy of its first 3/2^{+} state are reported. A large N=16 gap of 4.61(11) MeV is deduced from the mass measurement, which together with other measured properties, makes ^{36}Ca a doubly magic nucleus. The N=16 shell gaps in ^{36}Ca and ^{24}O are of similar amplitude, at both edges of the valley of stability. This feature is discussed in terms of nuclear forces involved, within state-of-the-art shell model calculations. Even though the global agreement with data is quite convincing, the calculations underestimate the size of the N=16 gap in ^{36}Ca by 840 keV.

2.
Phys Rev Lett ; 129(12): 122501, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36179171

RESUMO

Detailed spectroscopy of the neutron-deficient nucleus ^{36}Ca was obtained up to 9 MeV using the ^{37}Ca(p,d)^{36}Ca and the ^{38}Ca(p,t)^{36}Ca transfer reactions. The radioactive nuclei, produced by the LISE spectrometer at GANIL, interacted with the protons of the liquid hydrogen target CRYPTA, to produce light ejectiles (the deuteron d or triton t) that were detected in the MUST2 detector array, in coincidence with the heavy residues identified by a zero-degree detection system. Our main findings are (i) a similar shift in energy for the 1_{1}^{+} and 2_{1}^{+} states by about -250 keV, as compared with the mirror nucleus ^{36}S; (ii) the discovery of an intruder 0_{2}^{+} state at 2.83(13) MeV, which appears below the first 2^{+} state, in contradiction with the situation in ^{36}S; and (iii) a tentative 0_{3}^{+} state at 4.83(17) MeV, proposed to exhibit a bubble structure with two neutron vacancies in the 2s_{1/2} orbit. The inversion between the 0_{2}^{+} and 2_{1}^{+} states is due to the large mirror energy difference (MED) of -516(130) keV for the former. This feature is reproduced by shell model calculations, using the sd-pf valence space, predicting an almost pure intruder nature for the 0_{2}^{+} state, with two protons (neutrons) being excited across the Z=20 magic closure in ^{36}Ca (^{36}S). This mirror system has the largest MEDs ever observed, if one excludes the few cases induced by the effect of the continuum.

3.
Phys Rev Lett ; 93(14): 142503, 2004 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-15524786

RESUMO

We report on the g factor measurement of an isomer in the neutron-rich (61)(26)Fe (E(*)=861 keV and T(1/2)=239(5) ns). The isomer was produced and spin aligned via a projectile-fragmentation reaction at intermediate energy, the time dependent perturbed angular distribution method being used for the measurement of the g factor. For the first time, due to significant improvements of the experimental technique, an appreciable residual alignment of the nuclear spin ensemble has been observed, allowing a precise determination of its g factor, including the sign: g=-0.229(2). In this way we open the possibility to study moments of very neutron-rich short-lived isomers, not accessible via other production and spin-orientation methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...