Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Res Vet Sci ; 179: 105396, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39213744

RESUMO

Although diphtheria is a vaccine-preventable disease, numerous cases are still reported around the world, as well as outbreaks in countries, including European ones. Species of the Corynebacterium diphtheriae complex are potentially toxigenic and, therefore, must be considered given the possible consequences, such as the circulation of clones and transmission of antimicrobial resistance and virulence genes. Recently, Corynebacterium rouxii was characterized and included among the valid species of the complex. Therefore, two cases of C. rouxii infection arising from infections in domestic animals are presented here. We provide molecular characterization, phylogenetic analyses, genome sequencing, and CRISPR-Cas analyses to contribute to a better understanding of the molecular bases, pathogenesis, and epidemiological monitoring of this species, which is still little studied. We confirmed its taxonomic position with genome sequencing and in silico analysis and identified the ST-918 for both strains. The clinical isolates were sensitive resistance to benzylpenicillin and rifampin. Antimicrobial resistance genes, including tetB, rpoB2, and rbpA genes, were predicted. The bla and ampC genes were not found. Several virulence factors were also detected, including adhesion, iron uptake systems, gene regulation (dtxR), and post-translational modification (MdbA). Finally, one prophage and the Type I-E CRISPR-Cas system were identified.


Assuntos
Antibacterianos , Infecções por Corynebacterium , Corynebacterium , Doenças do Cão , Filogenia , Rifampina , Animais , Corynebacterium/genética , Corynebacterium/efeitos dos fármacos , Doenças do Cão/microbiologia , Cães , Rifampina/farmacologia , Infecções por Corynebacterium/veterinária , Infecções por Corynebacterium/microbiologia , Antibacterianos/farmacologia , Genoma Bacteriano , Farmacorresistência Bacteriana/genética , Penicilinas/farmacologia
2.
Chem Biodivers ; : e202401011, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110090

RESUMO

Porphyrins are intermediate metabolites in the biosynthesis of vital molecules, including heme, cobalamin, and chlorophyll. Bacterial porphyrins are known to be proinflammatory and have been associated with biofilm production. This study investigated porphyrin production by strains of Corynebacterium diphtheriae using emission spectroscopy, high-performance liquid chromatography with fluorescence detection, a diode array detector, and mass spectrometry. Emission spectroscopy revealed characteristic porphyrin emission spectra in all strains, with coproporphyrin III predominating. Qualitative analysis via different chromatography methods revealed identified coproporphyrin III, uroporphyrin I, and protoporphyrin IX in all the strains. Quantitative analysis revealed strain-dependent coproporphyrin III production. More studies are needed to investigate the relationship between porphyrin production and the virulence potential of Corynebacterium diphtheriae.

3.
Funct Integr Genomics ; 24(5): 145, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39196424

RESUMO

Cases of diphtheria, even in immunized individuals, are still reported in several parts of the world, including in Brazil. New outbreaks occur in Europe and other continents. In this context, studies on Corynebacterium diphtheriae infections are highly relevant, both for a better understanding of the pathogenesis of the disease and for controlling the circulation of clones and antimicrobial resistance genes. Here we present a case of cutaneous infection by multidrug-resistant Corynebacterium diphtheriae and provide its whole-genome sequencing. Genomic analysis revealed resistance genes, including tet(W), sul1, cmx, rpoB2, rbpA and mutation in rpoB. We performed phylogenetic analyzes and used the BRIG to compare the predicted resistance genes with those found in genomes from other significant isolates, including those associated with some outbreaks. Virulence factors such as spaD, srtBC, spaH, srtDE, surface-anchored pilus proteins (sapD), nonfimbrial adhesins (DIP0733, DIP1281, and DIP1621), embC and mptC (putatively involved in CdiLAM), sigA, dtxR and MdbA (putatively involved) in post-translational modification, were detected. We identified the CRISPR-Cas system in our isolate, which was classified as Type II-U based on the database and contains 15 spacers. This system functions as an adaptive immune mechanism. The strain was attributed to a new sequence type ST-928, and phylogenetic analysis confirmed that it was related to ST-634 of C. diphtheriae strains isolated in French Guiana and Brazil. In addition, since infections are not always reported, studies with the sequence data might be a way to complement and inform C. diphtheriae surveillance.


Assuntos
Sistemas CRISPR-Cas , Corynebacterium diphtheriae , Rifampina , Fatores de Virulência , Corynebacterium diphtheriae/genética , Corynebacterium diphtheriae/patogenicidade , Corynebacterium diphtheriae/efeitos dos fármacos , Humanos , Fatores de Virulência/genética , Rifampina/farmacologia , Mutação , Filogenia , Difteria/microbiologia , Genoma Bacteriano , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética
4.
Braz J Microbiol ; 55(2): 1405-1414, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38598149

RESUMO

BACKGROUND: Corynebacterium spp. are widely disseminated in the environment, and they are part of the skin and mucosal microbiota of animals and humans. Reports of human infections by Corynebacterium spp. have increased considerably in recent years and the appearance of multidrug resistant isolates around the world has drawn attention. OBJECTIVES: To describe a new species of Corynebacterium from human tissue bone is described after being misidentified using available methods. METHODS: For taxonomic analyses, phylogenetic analysis of 16S rRNA and rpoB genes, in silico DNA-DNA hybridization, average nucleotide and amino acid identity, multilocus sequence analysis, and phylogenetic analysis based on the complete genome were used. FINDINGS: Genomic taxonomic analyzes revealed values of in silico DNA-DNA hybridization, average nucleotide and amino acids identity below the values necessary for species characterization between the analyzed isolates and the closest phylogenetic relative Corynebacterium aurimucosum DSM 44532T. MAIN CONCLUSIONS: Genomic taxonomic analyzes indicate that the isolates analyzed comprise a new species of the Corynebacterium genus, which we propose to name Corynebacterium hiratae sp. nov. with isolate 332T (= CBAS 826T = CCBH 35,014T) as the type strain.


Assuntos
Infecções por Corynebacterium , Corynebacterium , DNA Bacteriano , Filogenia , RNA Ribossômico 16S , Corynebacterium/genética , Corynebacterium/classificação , Corynebacterium/isolamento & purificação , Humanos , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Infecções por Corynebacterium/microbiologia , Osso e Ossos/microbiologia , Tipagem de Sequências Multilocus , Genoma Bacteriano , Técnicas de Tipagem Bacteriana , Hibridização de Ácido Nucleico
5.
Eur J Clin Microbiol Infect Dis ; 43(1): 203-208, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37985550

RESUMO

We present a case of skin lesion caused by nontoxigenic Corynebacterium diphtheriae. Genomic taxonomy analyses corroborated the preliminary identification provided by mass spectrometry. The strain showed a susceptible phenotype with increased exposure to penicillin, the first drug of choice for the treatment. An empty type 1 class integron carrying only the sul1 gene, which encodes sulfonamide resistance, was found flanked by transposases. Virulence factors involved in adherence and iron uptake, as well as the CRISPR-Cas system, were predicted. MLST analysis revealed the ST-681, previously reported in French Guiana, a European territory.


Assuntos
Corynebacterium diphtheriae , Humanos , Corynebacterium diphtheriae/genética , Tipagem de Sequências Multilocus , Sequenciamento Completo do Genoma , Genômica , Ferro
6.
Braz J Microbiol ; 54(3): 1325-1334, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37597133

RESUMO

Diphtheria is an infectious disease potentially fatal that constitutes a threat to global health security, with possible local and systemic manifestations that result mainly from the production of diphtheria toxin (DT). In the present work, we report a case of infection by Corynebacterium diphtheriae in a cutaneous lesion of a fully immunized individual and provided an analysis of the complete genome of the isolate. The clinical isolate was first identified by MALDI-TOF Mass Spectrometry. The commercial strip system and mPCR performed phenotypic and genotypic characterization, respectively. The antimicrobial susceptibility profile was determined by the disk diffusion method. Additionally, genomic DNA was sequenced and analyzed for species confirmation and sequence type (ST) determination. Detection of resistance and virulence genes was performed by comparisons against ResFinder and VFDB databases. The isolate was identified as a nontoxigenic C. diphtheriae biovar Gravis strain. Its genome presented a size of 2.46 Mbp and a G + C content of 53.5%. Ribosomal Multilocus Sequence Typing (rMLST) allowed the confirmation of species as C. diphtheriae with 100% identity. DDH in silico corroborated this identification. Moreover, MLST analyses revealed that the isolate belongs to ST-536. No resistance genes were predicted or mutations detected in antimicrobial-related genes. On the other hand, virulence genes, mostly involved in iron uptake and adherence, were found. Presently, we provided sufficient clinical data regarding the C. diphtheriae cutaneous infection in addition to the phenotypic and genomic data of the isolate. Our results indicate a possible circulation of ST-536 in Brazil, causing cutaneous infection. Considering that cases of C. diphtheriae infections, as well as diphtheria outbreaks, have still been reported in several regions of the world, studies focusing on taxonomic analyzes and predictions of resistance genes may help to improve the diagnosis and to monitor the propagation of resistant clones. In addition, they can contribute to understanding the association between variation in genetic factors and resistance to antimicrobials.


Assuntos
Corynebacterium diphtheriae , Difteria , Humanos , Corynebacterium diphtheriae/genética , Tipagem de Sequências Multilocus , Celulite (Flegmão) , Genótipo
7.
Rev Soc Bras Med Trop ; 56: e0513, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37075453

RESUMO

BACKGROUND: Bacterial resistance to extended-spectrum beta-lactamases (ESBL) is present worldwide. Empirical antibiotic therapy is often needed, and the use of fluoroquinolones, such as ciprofloxacin and norfloxacin, is common. This study aimed to analyze the urine cultures from 2,680 outpatients in January 2019, 2020, 2021, and 2022, with bacterial counts above 100,000 CFU/mL in which Escherichia coli was the etiological agent. METHODS: We monitored the resistance of ESBL-positive and ESBL-negative strains to ciprofloxacin and norfloxacin and evaluated resistance rates. RESULTS: Significantly higher fluoroquinolone resistance rates were observed among ESBL-positive strains in all years studied. Furthermore, a significant increase in the rate of fluoroquinolone resistance was observed between 2021 and 2022 in ESBL-positive and -negative strains, as well as from 2020 to 2021 among the ESBL-positive strains. CONCLUSIONS: The data obtained in the present study showed a tendency towards an increase in fluoroquinolone resistance among ESBL-positive and -negative E. coli strains isolated from urine cultures in Brazil. Since empirical antibiotic therapy with fluoroquinolones is commonly used to treat diverse types of infections, such as community-acquired urinary tract infections, this work highlights the need for continuous monitoring of fluoroquinolone resistance among E. coli strains circulating in the community, which can mitigate the frequency of therapeutic failures and development of widespread multidrug-resistant strains.


Assuntos
Infecções Comunitárias Adquiridas , Infecções por Escherichia coli , Infecções Urinárias , Humanos , Fluoroquinolonas/farmacologia , Escherichia coli , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Norfloxacino , beta-Lactamases , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/microbiologia , Ciprofloxacina , Infecções Comunitárias Adquiridas/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Testes de Sensibilidade Microbiana
8.
Braz J Microbiol ; 54(2): 929-934, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37020078

RESUMO

Periprosthetic joint infection (PJI) remains one of the most common complications of total knee arthroplasty. Although mainly caused by Staphylococcus aureus and other Gram-positive microorganisms, occasionally, commensal or environmental bacteria are reported as causative agents of these infections. The present work aimed to report a case of PJI caused by an imipenem-resistant Mycobacterium senegalense strain. A bacterial strain isolated from the culture of intraoperative samples was observed by optical microscopy after Gram and Ziehl-Neelsen staining. The species identification was performed by mass spectrometry analysis and partial sequencing of the heat shock protein 65 (hsp65) gene. The antimicrobial profile of the clinical isolate was determined according to the Clinical and Laboratory Standards Institute. Mass spectrometry and gene sequencing analysis identified the bacterial isolate as Mycobacterium fortuitum complex and M. senegalense, respectively. The isolated was found exhibiting an imipenem-resistant profile. The accurate and timely identification, as well as investigation of the antimicrobial susceptibility profile, of fast-growing nontuberculous mycobacteria species are crucial for establishing the prompt and correct treatment of the infection, particularly in cases of patients at greater risk for opportunistic and severe infections.


Assuntos
Imipenem , Infecções Estafilocócicas , Humanos , Imipenem/farmacologia , Micobactérias não Tuberculosas/genética , Bactérias , Antibacterianos/farmacologia
9.
Braz J Microbiol ; 54(2): 779-790, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36869213

RESUMO

Non-diphtheria Corynebacterium species (NDC) belonging to the human skin and mucosa microbiota are frequently neglected as contaminants. However, reports of human infections by Corynebacterium spp. have increased considerably in recent years. In this study, a group of six NDC isolates of urine (n = 5) and sebaceous cyst (n = 1) from two South American countries were identified at genus level or misidentified based on API® Coryne and genetic/molecular analyses. The 16S rRNA (99.09-99.56%) and rpoB (96.18-97.14%) gene sequence similarities of the isolates were higher when compared with Corynebacterium aurimucosum DSM 44532 T. Multilocus sequence analysis (MLSA) indicated that these six NDC isolates compose a distinctive phylogenetic clade. Genome-based taxonomic analysis with the whole-genome sequences was able to separate these six isolates from other known Corynebacterium type strains. Average nucleotide identity (ANI), average amino acid identity (AAI), and digital DNA-DNA hybridization (dDDH) values between closely related type strains and the six isolates were considerably lower than the currently recommended threshold values for species circumscription. Phylogenetic and genomic taxonomy analyses indicated these microorganisms as a novel Corynebacterium species, for which we formally propose the name Corynebacterium guaraldiae sp. nov. with isolate 13T (= CBAS 827T = CCBH 35012T) as type strain.


Assuntos
Corynebacterium , DNA , Humanos , Análise de Sequência de DNA , Filogenia , RNA Ribossômico 16S/genética , Corynebacterium/genética , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Ácidos Graxos/química , Hibridização de Ácido Nucleico
12.
Rev. Soc. Bras. Med. Trop ; 56: e0513, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1431403

RESUMO

ABSTRACT Background: Bacterial resistance to extended-spectrum beta-lactamases (ESBL) is present worldwide. Empirical antibiotic therapy is often needed, and the use of fluoroquinolones, such as ciprofloxacin and norfloxacin, is common. This study aimed to analyze the urine cultures from 2,680 outpatients in January 2019, 2020, 2021, and 2022, with bacterial counts above 100,000 CFU/mL in which Escherichia coli was the etiological agent. Methods: We monitored the resistance of ESBL-positive and ESBL-negative strains to ciprofloxacin and norfloxacin and evaluated resistance rates. Results: Significantly higher fluoroquinolone resistance rates were observed among ESBL-positive strains in all years studied. Furthermore, a significant increase in the rate of fluoroquinolone resistance was observed between 2021 and 2022 in ESBL-positive and -negative strains, as well as from 2020 to 2021 among the ESBL-positive strains. Conclusions: The data obtained in the present study showed a tendency towards an increase in fluoroquinolone resistance among ESBL-positive and -negative E. coli strains isolated from urine cultures in Brazil. Since empirical antibiotic therapy with fluoroquinolones is commonly used to treat diverse types of infections, such as community-acquired urinary tract infections, this work highlights the need for continuous monitoring of fluoroquinolone resistance among E. coli strains circulating in the community, which can mitigate the frequency of therapeutic failures and development of widespread multidrug-resistant strains.

13.
Microbes Infect ; 24(8): 105001, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35569750

RESUMO

For many years, the potential pathogenic of non-diphtheriae corynebacteria were underestimated. Nowadays, a growing number of Corynebacterium species are recognized as opportunistic agents of human infections, mainly in hospital settings. In addition, multidrug-resistant Corynebacterium isolates from clinical specimens, have been reported and the role of Corynebacterium spp. in urinary tract infections (UTIs) has been highlighted. Several studies have reported Corynebacterium species as the agent of UTIs especially in patients with risk factors. Thus, the present work aimed to report the first isolation of Corynebacterium mycetoides from human urine and an initial study on its virulence properties. The isolate, initially characterized by phenotypical tests as a multidrug-resistant Corynebacterium sp., was recovered from the urine of a female transplant patient. Mass spectrometry and 16S rRNA and rpoB genes sequencing identified the isolate as C. mycetoides. The isolate was found able to adhere to and survive into epithelial cells (Vero cells), and its pathogenic potential was confirmed when tested against Caenorhabditis elegans nematode. The results obtained suggest that C. mycetoides is a potential pathogen for the urinary tract in humans and for a better understanding of the multifactorial mechanisms of virulence, studies about this species should be continued.


Assuntos
Infecções por Corynebacterium , Infecções Urinárias , Animais , Chlorocebus aethiops , Humanos , Feminino , Infecções por Corynebacterium/microbiologia , Virulência , RNA Ribossômico 16S/genética , Células Vero , Corynebacterium/genética
14.
Braz J Microbiol ; 53(2): 583-594, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35169995

RESUMO

Corynebacterium diphtheriae, the leading causing agent of diphtheria, has been increasingly related to invasive diseases, including sepsis, endocarditis, pneumonia, and osteomyelitis. Oxidative stress defense is required not only for successful growth and survival under environmental conditions but also in the regulation of virulence mechanisms of human pathogenic species, by promoting mucosal colonization, survival, dissemination, and defense against the innate immune system. OxyR, functioning as a negative and/or positive transcriptional regulator, has been included among the major bacterial coordinators of antioxidant response. OxyR was first reported as a repressor of catalase expression in C. diphtheriae. However, the involvement of OxyR in C. diphtheriae pathogenesis remains unclear. Accordingly, this work aimed to investigate the role of OxyR in mechanisms of host-pathogen interaction of C. diphtheriae through the disruption of the OxyR of the diphtheria toxin (DT)-producing C. diphtheriae CDC-E8392 strain. The effects of OxyR gene disruption were analyzed through interaction assays with human epithelial cell lines (HEp-2 and pneumocytes A549) and by the induction of experimental infections in Caenorhabditis elegans nematodes and Swiss Webster mice. The OxyR disruption exerted influence on NO production and mechanism accountable for the expression of the aggregative-adherence pattern (AA) expressed by CDC-E8392 strain on human epithelial HEp-2 cells. Moreover, invasive potential and intracytoplasmic survival within HEp-2 cells, as well as the arthritogenic potential in mice, were found affected by the OxyR disruption. In conclusion, data suggest that OxyR is implicated in mechanisms of host-pathogen interaction of C. diphtheriae.


Assuntos
Corynebacterium diphtheriae , Difteria , Endocardite , Animais , Corynebacterium diphtheriae/genética , Difteria/microbiologia , Endocardite/microbiologia , Interações Hospedeiro-Patógeno , Camundongos , Virulência
18.
Access Microbiol ; 3(11): 000284, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35018328

RESUMO

Diphtheria is a potentially fatal infection, mostly caused by diphtheria toxin (DT)-producing Corynebacterium diphtheriae strains. During the last decades, the isolation of DT-producing C. diphtheriae strains has been decreasing worldwide. However, non-DT-producing C. diphtheriae strains emerged as causative agents of cutaneous and invasive infections. Although endemic in countries with warm climates, cutaneous diphtheria is rarely reported in Brazil. Presently, an unusual case of skin lesion in a Brazilian elderly diabetic patient infected by a penicillin-resistant non-DT-producing C. diphtheriae strain was reported. Laboratory diagnosis included mass spectrometry and multiplex PCR analyses. Since cutaneous diphtheria lesions are possible sources of secondary diphtheria cases and systemic diseases and considering that penicillin is the first line of antimicrobial agent for the treatment of these infections, the detection of penicillin-resistant strains of diphtheria bacilli should be a matter of concern. Thus, cases similar to the presently reported should be appropriately investigated and treated, particularly in patients with risk factor (s) for the development of C. diphtheriae invasive infections, such as diabetes. Moreover, health professionals must be aware of the presence of C. diphtheriae in cutaneous lesions of lower limbs, a common type of morbidity in diabetic patients, especially in tropical and subtropical countries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA