Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Chem X ; 12: 100136, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-34661094

RESUMO

Microbial pigments have a distinguished potential for applications in food and pharmaceutical industries, stimulating the research in this field. The present study evaluated the ideal conditions for extracting bikaverin (red pigment) from the biomass of Fusarium oxysporum CCT7620. Among the solvents tested, ethyl acetate extraction resulted in the highest bikaverin concentration and the kinetic study revealed a saturation in bikaverin concentration from 256 min on. Based on a preliminary economic study, three sequential extractions with ethyl acetate was considered the ideal protocol to recover bikaverin. After extraction, chromatographic methods were tested to purify bikaverin. The use of silica gel or Sephadex (open column) could not successfully purify bikaverin, but the semi-preparative HPLC resulted in a bikaverin-enriched fraction with a purity degree equivalent to the commercial analytical standard. This work provides relevant information regarding the extraction and purification of bikaverin, which may be useful for other downstraming processes.

2.
Microbiol Res ; 244: 126653, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33302226

RESUMO

In last years, the main studied microbial sources of natural blue pigments have been the eukaryotic algae, Rhodophytes and Cryptophytes, and the cyanobacterium Arthrospira (Spirulina) platensis, responsible for the production of phycocyanin, one of the most important blue compounds approved for food and cosmetic use. Recent research also includes the indigoidine pigment from the bacteria Erwinia, Streptomyces and Photorhabdus. Despite these advances, there are still few options of microbial blue pigments reported so far, but the interest in these products is high due to the lack of stable natural blue pigments in nature. Filamentous fungi are particularly attractive for their ability to produce pigments with a wide range of colors. Bikaverin is a red metabolite present mainly in species of the genus Fusarium. Although originally red, the biomass containing bikaverin changes its color to blue after heat treatment, through a mechanism still unknown. In addition to the special behavior of color change by thermal treatment, bikaverin has beneficial biological properties, such as antimicrobial and antiproliferative activities, which can expand its use for the pharmaceutical and medical sectors. The present review addresses the production natural blue pigments and focuses on the properties of bikaverin, which can be an important source of blue pigment with potential applications in the food industry and in other industrial sectors.


Assuntos
Fusarium/metabolismo , Pigmentos Biológicos/metabolismo , Xantonas/metabolismo , Cor , Fusarium/química , Pigmentos Biológicos/análise , Xantonas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA