Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Chem Res Toxicol ; 36(4): 570-582, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-35537067

RESUMO

The emergence and re-emergence of bacterial strains resistant to multiple drugs represent a global health threat, and the search for novel biological targets is a worldwide concern. AhpC are enzymes involved in bacterial redox homeostasis by metabolizing diverse kinds of hydroperoxides. In pathogenic bacteria, AhpC are related to several functions, as some isoforms are characterized as virulence factors. However, no inhibitor has been systematically evaluated to date. Here we show that the natural ent-kaurane Adenanthin (Adn) efficiently inhibits AhpC and molecular interactions were explored by computer assisted simulations. Additionally, Adn interferes with growth and potentializes the effect of antibiotics (kanamycin and PMBN), positioning Adn as a promising compound to treat infections caused by multiresistant bacterial strains.


Assuntos
Diterpenos do Tipo Caurano , Peroxirredoxinas , Antibacterianos/farmacologia , Diterpenos do Tipo Caurano/farmacologia , Canamicina , Bactérias
2.
Appl Microbiol Biotechnol ; 105(14-15): 5701-5717, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34258640

RESUMO

The oxidative and nitrosative responses generated by animals and plants are important defenses against infection and establishment of pathogenic microorganisms such as bacteria, fungi, and protozoa. Among distinct oxidant species, hydroperoxides are a group of chemically diverse compounds that comprise small hydrophilic molecules, such as hydrogen peroxide and peroxynitrite, and bulky hydrophobic species, such as organic hydroperoxides. Peroxiredoxins (Prx) are ubiquitous enzymes that use a highly reactive cysteine residue to decompose hydroperoxides and can also perform other functions, like molecular chaperone and phospholipase activities, contributing to microbial protection against the host defenses. Prx are present in distinct cell compartments and, in some cases, they can be secreted to the extracellular environment. Despite their high abundance, Prx expression can be further increased in response to oxidative stress promoted by host defense systems, by treatment with hydroperoxides or by antibiotics. In consequence, some isoforms have been described as virulence factors, highlighting their importance in pathogenesis. Prx are very diverse and are classified into six different classes (Prx1-AhpC, BCP-PrxQ, Tpx, Prx5, Prx6, and AhpE) based on structural and biochemical features. Some groups are absent in hosts, while others present structural peculiarities that differentiate them from the host's isoforms. In this context, the intrinsic characteristics of these enzymes may aid the development of new drugs to combat pathogenic microorganisms. Additionally, since some isoforms are also found in the extracellular environment, Prx emerge as attractive targets for the production of diagnostic tests and vaccines. KEY POINTS: • Peroxiredoxins are front-line defenses against host oxidative and nitrosative stress. • Functional and structural peculiarities differ pathogen and host enzymes. • Peroxiredoxins are potential targets to microbicidal drugs.


Assuntos
Peróxido de Hidrogênio , Peroxirredoxinas , Animais , Oxirredução , Estresse Oxidativo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Plantas/metabolismo
3.
Antioxidants (Basel) ; 10(7)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202406

RESUMO

Typical 2-Cys peroxiredoxins (2-Cys Prx) are ubiquitous Cys-based peroxidases, which are stable as decamers in the reduced state, and may dissociate into dimers upon disulfide bond formation. A peroxidatic Cys (CP) takes part of a catalytic triad, together with a Thr/Ser and an Arg. Previously, we described that the presence of Ser (instead of Thr) in the active site stabilizes yeast 2-Cys Prx as decamers. Here, we compared the hyperoxidation susceptibilities of yeast 2-Cys Prx. Notably, 2-Cys Prx containing Ser (named here Ser-Prx) were more resistant to hyperoxidation than enzymes containing Thr (Thr-Prx). In silico analysis revealed that Thr-Prx are more frequent in all domains of life, while Ser-Prx are more abundant in bacteria. As yeast 2-Cys Prx, bacterial Ser-Prx are more stable as decamers than Thr-Prx. However, bacterial Ser-Prx were only slightly more resistant to hyperoxidation than Thr-Prx. Furthermore, in all cases, organic hydroperoxide inhibited more the peroxidase activities of 2-Cys Prx than hydrogen peroxide. Moreover, bacterial Ser-Prx displayed increased thermal resistance and chaperone activity, which may be related with its enhanced stability as decamers compared to Thr-Prx. Therefore, the single substitution of Thr by Ser in the catalytic triad results in profound biochemical and structural differences in 2-Cys Prx.

4.
Appl Microbiol Biotechnol ; 104(12): 5477-5492, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32307572

RESUMO

The pathogen Xylella fastidiosa belongs to the Xanthomonadaceae family, a large group of Gram-negative bacteria that cause diseases in many economically important crops. A predicted gene, annotated as glutaredoxin-like protein (glp), was found to be highly conserved among the genomes of different genera within this family and highly expressed in X. fastidiosa. Analysis of the GLP protein sequences revealed three protein domains: one similar to monothiol glutaredoxins (Grx), an Fe-S cluster and a thiosulfate sulfurtransferase/rhodanese domain (Tst/Rho), which is generally involved in sulfur metabolism and cyanide detoxification. To characterize the biochemical properties of GLP, we expressed and purified the X. fastidiosa recombinant GLP enzyme. Grx activity and Fe-S cluster formation were not observed, while an evaluation of Tst/Rho enzymatic activity revealed that GLP can detoxify cyanide and transfer inorganic sulfur to acceptor molecules in vitro. The biological activity of GLP relies on the cysteine residues in the Grx and Tst/Rho domains (Cys33 and Cys266, respectively), and structural analysis showed that GLP and GLPC266S were able to form high molecular weight oligomers (> 600 kDa), while replacement of Cys33 with Ser destabilized the quaternary structure. In vivo heterologous enzyme expression experiments in Escherichia coli revealed that GLP can protect bacteria against high concentrations of cyanide and hydrogen peroxide. Finally, phylogenetic analysis showed that homologous glp genes are distributed across Gram-negative bacterial families with conservation of the N- to C-domain order. However, no eukaryotic organism contains this enzyme. Altogether, these results suggest that GLP is an important enzyme with cyanide-decomposing and sulfurtransferase functions in bacteria, whose presence in eukaryotes we could not observe, representing a promising biological target for new pharmaceuticals.


Assuntos
Cianetos/metabolismo , Glutarredoxinas/metabolismo , Estresse Oxidativo , Sulfurtransferases/metabolismo , Xylella/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glutarredoxinas/genética , Modelos Moleculares , Filogenia , Conformação Proteica , Sulfurtransferases/genética , Tiossulfato Sulfurtransferase/metabolismo
5.
São Paulo; s.n; s.n; 2017. 58 p. tab, graf, ilus.
Tese em Português | LILACS | ID: biblio-1361660

RESUMO

As peroxirredoxinas (Prx) são enzimas antioxidantes que se destacam pela capacidade de decompor uma grande variedade de hidroperóxidos com elevada eficiência (106-108M-1s-1), mantendo essas moléculas em níveis adequados à homeostase celular. Entretanto, já foi demonstrado que em diversos tipos tumorais os níveis de Prx são extremamente aumentados e experimentos envolvendo sua inativação resultam na diferenciação ou apoptose de células tumorais. Recentemente, foi descoberto um diterpenóide denominado adenantina que seria o primeiro inibidor para as Prx1 e Prx2 de humanos e foi demonstrada que sua aplicação em células de leucemia mieloide aguda promoveu diferenciação ou apoptose dessas células. Nesse contexto, o presente trabalho apresenta duas vertentes: 1) A caracterização das alterações estruturais e funcionais promovidas pela ligação da adenantina ao sítio ativo das Prx utilizando Tsa1 de Saccharomyces cerevisiae como modelo biológico, em função da sua alta similaridade com Prx2 de humanos; 2) Avaliação da atividade antitumoral dose dependente de adenantina sobre as linhagens celulares REH e MOLT-4 de leucemia linfoide aguda. No que concerne à primeira linha de investigação, nossos resultados revelam que Tsa1 é suscetível à inibição por adenantina, uma vez que o tratamento reduziu em ~66 % a velocidade de decomposição de peróxido de hidrogênio. Adicionalmente, a mutação da Thr44 de Tsa1, pertencente à chamada tríade catalítica, por uma Ser resultou em uma proteína mais suscetível a alterações na estrutura secundária e à inibição da atividade peroxidásica em função da ligação com adenantina, apresentando uma diminuição de ~85% na velocidade de reação. Características semelhantes foram observadas para a proteoforma Tsa2 de S. cerevisiae, que carreia naturalmente a substituição da Thr44 pela Ser. Análises de sequências de Prx em bancos de dados revelaram que majoritariamente proteínas contendo Ser são encontradas em organismos procariotos, muitos deles patogênicos. Finalmente, demonstramos por meio de ensaios citotoxicidade que as bactérias Staphylococcus aureus e Staphylococcus epidermidis, que possuem uma Ser na tríade catalítica, têm seu crescimento inibido pelo tratamento com adenantina (IC50 de 460µM e 77µM, respectivamente), enquanto que para Escherichia coli, que possui Thr nessa posição, a toxicidade da adenantina foi bastante baixa (não foi possível determinar o IC50 nas condições utilizadas). Dessa forma, os dados apresentados neste trabalho demonstram o potencial da utilização da adenantina tanto como antibiótico quanto como antileucêmico


Peroxiredoxins (Prx) are antioxidant enzymes which stand out due the ability to decompose a wide variety of hydroperoxides with high efficiency (106-108M-1s-1) maintaining these molecules at suitable levels to cellular homeostasis and participating in several signaling events. However, it has been shown that, in many tumor types, Prx levels are extremely increased and experiments involving its inactivation have resulted in differentiation or apoptosis of tumor cells. It was recently found a diterpenoid, called adenanthin, that would be the first human Prx1 and Prx2 inhibitor and it was demonstrated that its application in acute myeloid leukemia cells was able to promote differentiation or apoptosis. In this context, this work presents two lines of research: 1) Characterization of structural and functional changes promoted by adenanthin binding to Prx active site using Tsa1 from Saccharomyces cerevisiae as biological model, due to its high similarity to human Prx2. 2) Evaluation of adenanthin dose-dependent antitumor activity over the acute lymphoid leukemia cell lines REH and MOLT-4. As regards the first line of research, our result reveal that Tsa1 is susceptible to inhibition by adenanthin, since the treatment with this binder reduced the hydrogen peroxide decomposition velocity in ~ 66%. In addition, the replacement of Thr44 from Tsa1, aminoacid belonging to the so-called catalytic triad, by a Ser resulted in a protein more susceptible to alterations in secondary structure and to peroxidase activity inhibition in function of adenanthin binding, presenting ~85% of decrease in reaction velocity. Similar characteristics were observed for Tsa2 proteoform from S. cerevisiae, which naturally carries the substitution of Thr44 by Ser. Prx sequences analyzes in databases revealed that mostly Ser-containing proteins are found in prokaryotic organisms, many of them pathogenic ones. Finally, we demonstrate through cytotoxicity assays that the bacteria Staphylococcus aureus and Staphylococcus epidermidis, which have a Ser in catalytic triad, have their growth inhibited by adenanthin treatment (IC50 of 460µM and 77µM, respectively), whereas for Escherichia Coli, which has Thr at that position, the tocyxicity of adenanthin was quite low (it was not possible to determine the IC50 under the used conditions). Regarding the second line of investigation, we found that adenanthin is able to induce the death of leukemic cell lines REH and MOLT-4, and for the last one, there was an unexpected proliferation of cells treated by the longest incubation period (72 hours), characterizing a possible indication of differentiation process. In this sense, the data presented here demonstrate the potential of adenanthin use in both antibiotic and antileukemic treatment


Assuntos
Saccharomyces cerevisiae/metabolismo , Peroxirredoxinas/classificação , Inibidores do Crescimento/análise , Leucemia Mieloide Aguda/classificação , Diterpenos/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/classificação , Antibacterianos/farmacologia , Antioxidantes/farmacologia
6.
Sci Rep ; 6: 33133, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27629822

RESUMO

Typical 2-Cys Peroxiredoxins (2-Cys Prxs) reduce hydroperoxides with extraordinary rates due to an active site composed of a catalytic triad, containing a peroxidatic cysteine (CP), an Arg, and a Thr (or Ser). 2-Cys Prx are involved in processes such as cancer; neurodegeneration and host-pathogen interactions. During catalysis, 2-Cys Prxs switch between decamers and dimers. Analysis of 2-Cys Prx structures in the fully folded (but not locally unfolded) form revealed a highly conserved, non-conventional hydrogen bond (CH-π) between the catalytic triad Thr of a dimer with an aromatic residue of an adjacent dimer. In contrast, structures of 2-Cys Prxs with a Ser in place of the Thr do not display this CH-π bond. Chromatographic and structural data indicate that the Thr (but not Ser) destabilizes the decamer structure in the oxidized state probably through steric hindrance. As a general trend, mutations in a yeast 2-Cys Prx (Tsa1) favoring the dimeric state also displayed a decreased catalytic activity. Remarkably, yeast naturally contains Thr-Ser variants (Tsa1 and Tsa2, respectively) with distinct oligomeric stabilities in their disulfide states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...