Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 9(5)2020 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-32456149

RESUMO

Drought during the formative stages of a plant's growth triggers a sequence of responses to maintain optimal growing conditions, but often at the expense of crop productivity. Two field experiments were conducted to determine the effect of drought on 10 high-yielding sugarcane genotypes at two formative stages (the tillering stage (TS) and stalk elongation (SS)), within 30 days after treatment imposition. The experiments followed a split-plot in a randomized complete block design with three replicates per genotype. Agro-physiological responses to drought were observed to compare the differences in the response of sugarcane during the two formative stages. Drought significantly reduced total chlorophyll content (Chl) and stomatal conductance (Gs) for both formative stages, while significantly increasing total scavenging activity (AOA) and electrolyte leakage (EC). A higher level of Chl was observed in the stalk elongation stage compared to the tillering stage; however, lower AOA coupled with higher EC in the stalk elongation stage suggests higher drought susceptibility. Pearson's correlation analysis revealed a stronger correlation between plant height, internode length, Chl, AOA, EC, and Gs at the tillering stage relative to the stalk elongation stage. Moreover, results from the multivariate analysis indicate the different contribution values of each parameter, supplementing the hypothesized difference in response between the two formative stages. Multivariate analysis clustered the 10 genotypes into groups based on the traits evaluated, suggesting the ability of these traits to detect differences in a sample population. The observed relationship among traits during the two formative stages of sugarcane will be significant in screening and identifying drought-susceptible and drought-tolerant genotypes for variety development studies.

2.
Front Plant Sci ; 8: 1539, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28936216

RESUMO

Jatropha curcas L. (Jatropha), a shrub species of the family Euphorbiaceae, has been recognized as a promising biofuel plant for reducing greenhouse gas emissions. However, recent attempts at commercial cultivation in Africa and Asia have failed because of low productivity. It is important to elucidate genetic diversity and relationship in worldwide Jatropha genetic resources for breeding of better commercial cultivars. Here, genetic diversity was analyzed by using 246 accessions from Mesoamerica, Africa and Asia, based on 59 simple sequence repeat markers and eight retrotransposon-based insertion polymorphism markers. We found that central Chiapas of Mexico possesses the most diverse genetic resources, and the Chiapas Central Depression could be the center of origin. We identified three genetic groups in Mesoamerica, whose distribution revealed a distinct geographic cline. One of them consists mainly of accessions from central Chiapas. This suggests that it represents the original genetic group. We found two Veracruz accessions in another group, whose ancestors might be shipped from Port of Veracruz to the Old World, to be the source of all African and Asian Jatropha. Our results suggest the human selection that caused low productivity in Africa and Asia, and also breeding strategies to improve African and Asian Jatropha. Cultivars improved in the productivity will contribute to expand mass commercial cultivation of Jatropha in Africa and Asia to increase biofuel production, and finally will support in the battle against the climate change.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...