Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Comp Neurol ; 532(7): e25649, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38967410

RESUMO

The physiological aging process is well known for functional decline in visual abilities. Among the components of the visual system, the dorsal lateral geniculate nucleus (DLG) and superior colliculus (SC) provide a good model for aging investigations, as these structures constitute the main visual pathways for retinal inputs reaching the visual cortex. However, there are limited data available on quantitative morphological and neurochemical aspects in DLG and SC across lifespan. Here, we used optical density to determine immunoexpression of glial fibrillary acidic protein (GFAP) and design-based stereological probes to estimate the neuronal number, total volume, and layer volume of the DLG and SC in marmosets (Callithrix jacchus), ranging from 36 to 143 months of age. Our results revealed an age-related increase in total volume and layer volume of the DLG, with an overall stability in SC volume. Furthermore, a stable neuronal number was demonstrated in DLG and superficial layers of SC (SCv). A decrease in GFAP immunoexpression was observed in both visual centers. The results indicate region-specific variability in volumetric parameter, possibly attributed to structural plastic events in response to inflammation and compensatory mechanisms at the cellular and subcellular level. Additionally, the DLG and SCv seem to be less vulnerable to aging effects in terms of neuronal number. The neuropeptidergic data suggest that reduced GFAP expression may reflect morphological atrophy in the astroglial cells. This study contributes to updating the current understanding of aging effects in the visual system and stablishes a crucial foundation for future research on visual perception throughout the aging process.


Assuntos
Envelhecimento , Callithrix , Corpos Geniculados , Proteína Glial Fibrilar Ácida , Neurônios , Animais , Envelhecimento/fisiologia , Envelhecimento/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Proteína Glial Fibrilar Ácida/biossíntese , Neurônios/metabolismo , Masculino , Corpos Geniculados/metabolismo , Feminino , Colículos Superiores/metabolismo , Vias Visuais/metabolismo
2.
PLoS One ; 18(10): e0292342, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37792859

RESUMO

The aging effects on circadian rhythms have diverse implications including changes in the pattern of rhythmic expressions, such as a wide fragmentation of the rhythm of rest-activity and decrease in amplitude of activity regulated by the suprachiasmatic nucleus (SCN). The study of blue light on biological aspects has received great current interest due, among some aspects, to its positive effects on psychiatric disorders in humans. This study aims to evaluate the effect of blue light therapy on the SCN functional aspects, through the evaluation of the rest-activity rhythm, in aging rats. For this, 33 sixteen-months-old male Wistar rats underwent continuous records of locomotor activity and were exposed to periods of 6 hours of blue light during the first half of the light phase (Zeitgeber times 0-6) for 14 days. After this, the rats were maintained at 12h:12h light:dark cycle to check the long-term effect of blue light for 14 days. Blue light repeated exposure showed positive effects on the rhythmic variables of locomotor activity in aged rats, particularly the increase in amplitude, elevation of rhythmic robustness, phase advance in acrophase, and greater consolidation of the resting phase. This effect depends on the presence of daily blue light exposure. In conclusion, our results indicate that blue light is a reliable therapy to reduce circadian dysfunctions in aged rats, but other studies assessing how blue light modulates the neural components to modulate this response are still needed.


Assuntos
Ritmo Circadiano , Luz , Humanos , Ratos , Animais , Masculino , Ratos Wistar , Ritmo Circadiano/fisiologia , Fotoperíodo , Núcleo Supraquiasmático/metabolismo
3.
Front Neural Circuits ; 17: 1088686, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36817647

RESUMO

The mammalian retina captures a multitude of diverse features from the external environment and conveys them via the optic nerve to a myriad of retinorecipient nuclei. Understanding how retinal signals act in distinct brain functions is one of the most central and established goals of neuroscience. Using the common marmoset (Callithrix jacchus), a monkey from Northeastern Brazil, as an animal model for parsing how retinal innervation works in the brain, started decades ago due to their marmoset's small bodies, rapid reproduction rate, and brain features. In the course of that research, a large amount of new and sophisticated neuroanatomical techniques was developed and employed to explain retinal connectivity. As a consequence, image and non-image-forming regions, functions, and pathways, as well as retinal cell types were described. Image-forming circuits give rise directly to vision, while the non-image-forming territories support circadian physiological processes, although part of their functional significance is uncertain. Here, we reviewed the current state of knowledge concerning retinal circuitry in marmosets from neuroanatomical investigations. We have also highlighted the aspects of marmoset retinal circuitry that remain obscure, in addition, to identify what further research is needed to better understand the connections and functions of retinorecipient structures.


Assuntos
Callithrix , Retina , Animais , Callithrix/fisiologia , Encéfalo/fisiologia , Visão Ocular , Neurônios , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...