Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ADMET DMPK ; 12(2): 299-317, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720922

RESUMO

Background and purpose: The employment of yeasts for biomedical purposes has become increasingly frequent for the delivery of prophylactic and therapeutic products. Its structural components, such as ß-glucans, mannan, and chitin, can be explored as immunostimulators that show safety and low toxicity. Besides, this system minimizes antigen degradation after administration, facilitating the delivery to the target cells. Review approach: This review sought to present molecules derived from yeast, called yeast shells (YS), and their applications as carrier vehicles for drugs, proteins, and nucleic acids for immunotherapy purposes. Furthermore, due to the diversity of information regarding the production and immunostimulation of these compounds, a survey of the protocols and immune response profiles generated was presented. Key results: The use of YS has allowed the development of strategies that combine efficiency and effectiveness in antigen delivery. The capsular structure can be recognized and phagocytized by dendritic cells and macrophages. In addition, the combination with different molecules, such as nanoparticles or even additional adjuvants, improves the cargo loading, enhancing the system. Activation by specific immune pathways can also be achieved by different administration routes. Conclusion: Yeast derivatives combined in different ways can increase immunostimulation, enhancing the delivery of medicines and vaccine antigens. These aspects, combined with the simplicity of the production steps, make these strategies more accessible to be applied in the prevention and treatment of various diseases.

2.
Viruses ; 16(5)2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38793599

RESUMO

Breast cancer is the most common neoplasm worldwide. Viral infections are involved with carcinogenesis, especially those caused by oncogenic Human Papillomavirus (HPV) genotypes. Despite the detection of HPV in breast carcinomas, the virus's activity against this type of cancer remains controversial. HPV infection promotes remodeling of the host's immune response, resulting in an immunosuppressive profile. This study assessed the individual role of HPV oncogenes in the cell line MDA-MB-231 transfected with the E5, E6, and E7 oncogenes and co-cultured with peripheral blood mononuclear cells. Immunophenotyping was conducted to evaluate immune system modulation. There was an increase in CD4+ T cell numbers when compared with non-transfected and transfected MDA-MB-231, especially in the Treg profile. Pro-inflammatory intracellular cytokines, such as IFN-γ, TNF-α, and IL-17, were impaired by transfected cells, and a decrease in the cytolytic activity of the CD8+ and CD56+ lymphocytes was observed in the presence of HPV oncogenes, mainly with E6 and E7. The E6 and E7 oncogenes decrease monocyte expression, activating the expected M1 profile. In the monocytes found, a pro-inflammatory role was observed according to the cytokines released in the supernatant. In conclusion, the MDA-MB-231 cell lineage transfected with HPV oncogenes can downregulate the number and function of lymphocytes and monocytes.


Assuntos
Neoplasias da Mama , Citocinas , Humanos , Feminino , Citocinas/metabolismo , Neoplasias da Mama/imunologia , Neoplasias da Mama/virologia , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/virologia , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/virologia , Transfecção , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/imunologia , Proteínas Oncogênicas Virais/metabolismo , Papillomaviridae/genética , Papillomaviridae/imunologia , Papillomavirus Humano
3.
Microorganisms ; 11(8)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37630475

RESUMO

Cervical cancer is associated with persistent infections by high-risk Human Papillomavirus (HPV) types that may have nucleotide polymorphisms and, consequently, different oncogenic potentials. Therefore, this study aimed to evaluate the genetic variability and structural effects of the E7 oncogene of HPV58 in cervical scraping samples from Brazilian women. The study was developed with patients from hospitals in the metropolitan area of Recife, PE, Brazil. The most frequent HPV types were, in descending order of abundance, HPV16, 31, and 58. Phylogenetic analysis demonstrated that the isolates were classified into sublineages A2, C1, and D2. Two positively selected mutations were found in E7: 63G and 64T. The mutations G41R, G63D, and T64A in the E7 protein reduced the stability of the protein structure. Utilizing an NF-kB reporter assay, we observed a decrease in the NK-kB pathway activity with the HPV58-E7 variant 54S compared to the WT E7. The other detected E7 HPV58 variants presented similar NF-kB pathway activity compared to the WT E7. In this study, it was possible to identify mutations that may interfere with the molecular interaction between the viral oncoproteins and host proteins.

4.
Vaccines (Basel) ; 11(8)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37631922

RESUMO

The understanding of the relationship between immunological responses and cancers, especially those related to HPV, has allowed for the study and development of therapeutic vaccines against these neoplasias. There is a growing number of studies about the composition and influence of the tumor microenvironment (TME) in the progression or establishment of the most varied types of cancer. Hence, it has been possible to structure immunotherapy approaches based on therapeutic vaccines that are even more specific and directed to components of TME and the immune response associated with tumors. Among these components are dendritic cells (DCs), which are the main professional antigen-presenting cells (APCs) already studied in therapy strategies for HPV-related cancers. On the other hand, tumor-associated macrophages are also potential targets since the profile present in tumor infiltrates, M1 or M2, influences the prognosis of some types of cancer. These two cell types can be targets for therapy or immunomodulation. In this context, our review aims to provide an overview of immunotherapy strategies for HPV-positive tumors, such as cervical and head and neck cancers, pointing to TME immune cells as promising targets for these approaches. This review also explores the potential of immunotherapy in cancer treatment, including checkpoint inhibitors, cytokine immunotherapies, immunotherapy vaccines, and cell therapies. Furthermore, it highlights the importance of understanding the TME and its effect on the design and achievement of immunotherapeutic methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...