Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Sci ; 11(8)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34439628

RESUMO

Microglia influence pathological progression in neurological diseases, reacting to insults by expressing multiple morphofunctional phenotypes. However, the complete morphological spectrum of reactive microglia, as revealed by three-dimensional microscopic reconstruction, has not been detailed in virus limbic encephalitis. Here, using an anatomical series of brain sections, we expanded on an earlier Piry arbovirus encephalitis study to include CA1/CA2 and assessed the morphological response of homeostatic and reactive microglia at eight days post-infection. Hierarchical cluster and linear discriminant function analyses of multimodal morphometric features distinguished microglial morphology between infected animals and controls. For a broad representation of the spectrum of microglial morphology in each defined cluster, we chose representative cells of homeostatic and reactive microglia, using the sum of the distances of each cell in relation to all the others. Based on multivariate analysis, reactive microglia of infected animals showed more complex trees and thicker branches, covering a larger volume of tissue than in control animals. This approach offers a reliable representation of microglia dispersion in the Euclidean space, revealing the morphological kaleidoscope of surveillant and reactive microglia morphotypes. Because form precedes function in nature, our findings offer a starting point for research using integrative methods to understand microglia form and function.

2.
Front Immunol ; 12: 683026, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220831

RESUMO

Microglial immunosurveillance of the brain parenchyma to detect local perturbations in homeostasis, in all species, results in the adoption of a spectrum of morphological changes that reflect functional adaptations. Here, we review the contribution of these changes in microglia morphology in distantly related species, in homeostatic and non-homeostatic conditions, with three principal goals (1): to review the phylogenetic influences on the morphological diversity of microglia during homeostasis (2); to explore the impact of homeostatic perturbations (Dengue virus challenge) in distantly related species (Mus musculus and Callithrix penicillata) as a proxy for the differential immune response in small and large brains; and (3) to examine the influences of environmental enrichment and aging on the plasticity of the microglial morphological response following an immunological challenge (neurotropic arbovirus infection). Our findings reveal that the differences in microglia morphology across distantly related species under homeostatic condition cannot be attributed to the phylogenetic origin of the species. However, large and small brains, under similar non-homeostatic conditions, display differential microglial morphological responses, and we argue that age and environment interact to affect the microglia morphology after an immunological challenge; in particular, mice living in an enriched environment exhibit a more efficient immune response to the virus resulting in earlier removal of the virus and earlier return to the homeostatic morphological phenotype of microglia than it is observed in sedentary mice.


Assuntos
Microglia/citologia , Animais , Biomarcadores , Encéfalo/anatomia & histologia , Encéfalo/citologia , Encéfalo/fisiologia , Forma Celular , Quirópteros , Cognição , Metabolismo Energético , Meio Ambiente , Homeostase , Humanos , Camundongos , Microglia/fisiologia , Tamanho do Órgão , Filogenia , Desempenho Psicomotor , Especificidade da Espécie
3.
PLoS One ; 6(1): e15597, 2011 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-21264301

RESUMO

An enriched environment has previously been described as enhancing natural killer cell activity of recognizing and killing virally infected cells. However, the effects of environmental enrichment on behavioral changes in relation to virus clearance and the neuropathology of encephalitis have not been studied in detail. We tested the hypothesis that environmental enrichment leads to less CNS neuroinvasion and/or more rapid viral clearance in association with T cells without neuronal damage. Stereology-based estimates of activated microglia perineuronal nets and neurons in CA3 were correlated with behavioral changes in the Piry rhabdovirus model of encephalitis in the albino Swiss mouse. Two-month-old female mice maintained in impoverished (IE) or enriched environments (EE) for 3 months were behaviorally tested. After the tests, an equal volume of Piry virus (IEPy, EEPy)-infected or normal brain homogenates were nasally instilled. Eight days post-instillation (dpi), when behavioral changes became apparent, brains were fixed and processed to detect viral antigens, activated microglia, perineuronal nets, and T lymphocytes by immuno- or histochemical reactions. At 20 or 40 dpi, the remaining animals were behaviorally tested and processed for the same markers. In IEPy mice, burrowing activity decreased and recovered earlier (8-10 dpi) than open field (20-40 dpi) but remained unaltered in the EEPy group. EEPy mice presented higher T-cell infiltration, less CNS cell infection by the virus and/or faster virus clearance, less microgliosis, and less damage to the extracellular matrix than IEPy. In both EEPy and IEPy animals, CA3 neuronal number remained unaltered. The results suggest that an enriched environment promotes a more effective immune response to clear CNS virus and not at the cost of CNS damage.


Assuntos
Comportamento Animal , Sistema Nervoso Central/virologia , Encefalite Viral/imunologia , Microglia/metabolismo , Infecções por Rhabdoviridae/imunologia , Animais , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/patologia , Encefalite Viral/patologia , Encefalite Viral/virologia , Feminino , Camundongos , Neurônios , Rhabdoviridae , Infecções por Rhabdoviridae/patologia , Linfócitos T/imunologia , Linfócitos T/virologia , Resultado do Tratamento
4.
PLoS One ; 3(3): e1733, 2008 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-18320052

RESUMO

In previous reports we proposed a new genus for Rhabdoviridae and described neurotropic preference and gross neuropathology in newborn albino Swiss mice after Curionopolis and Itacaiunas infections. In the present report a time-course study of experimental encephalitis induced by Itacaiunas and Curionopolis virus was conducted both in vivo and in vitro to investigate cellular targets and the sequence of neuroinvasion. We also investigate, after intranasal inoculation, clinical signs, histopathology and apoptosis in correlation with viral immunolabeling at different time points. Curionopolis and Itacaiunas viral antigens were first detected in the parenchyma of olfactory pathways at 2 and 3 days post-inoculation (dpi) and the first clinical signs were observed at 4 and 8 dpi, respectively. After Curionopolis infection, the mortality rate was 100% between 5 and 6 dpi, and 35% between 8 and 15 dpi after Itacaiunas infection. We identified CNS mice cell types both in vivo and in vitro and the temporal sequence of neuroanatomical olfactory areas infected by Itacaiunas and Curionopolis virus. Distinct virulences were reflected in the neuropathological changes including TUNEL immunolabeling and cytopathic effects, more intense and precocious after intracerebral or in vitro inoculations of Curionopolis than after Itacaiunas virus. In vitro studies revealed neuronal but not astrocyte or microglial cytopathic effects at 2 dpi, with monolayer destruction occurring at 5 and 7 dpi with Curionopolis and Itacaiunas virus, respectively. Ultrastructural changes included virus budding associated with interstitial and perivascular edema, endothelial hypertrophy, a reduced and/or collapsed small vessel luminal area, thickening of the capillary basement membrane, and presence of phagocytosed apoptotic bodies. Glial cells with viral budding similar to oligodendrocytes were infected with Itacaiunas virus but not with Curionopolis virus. Thus, Curionopolis and Itacaiunas viruses share many pathological and clinical features present in other rhabdoviruses but distinct virulence and glial targets in newborn albino Swiss mice brain.


Assuntos
Encefalite Viral/patologia , Infecções por Rhabdoviridae/patologia , Rhabdoviridae/classificação , Rhabdoviridae/patogenicidade , Animais , Animais Recém-Nascidos , Apoptose , Encéfalo/embriologia , Encéfalo/patologia , Encéfalo/virologia , Células Cultivadas , Modelos Animais de Doenças , Encefalite Viral/etiologia , Feminino , Imunofluorescência , Técnicas Imunoenzimáticas , Camundongos , Neuroglia/citologia , Neuroglia/metabolismo , Neuroglia/virologia , Neurônios/citologia , Neurônios/metabolismo , Neurônios/virologia , Gravidez , Infecções por Rhabdoviridae/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...