Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theriogenology ; 159: 60-68, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33113445

RESUMO

The assessment of embryo quality aims to enhance subsequent pregnancy and live birth outcomes. Metabolic analysis of embryos has immense potential in this regard. As a step towards this goal, here we assess the metabolism of bovine embryos using label-free optical imaging. We compared embryos defined as either on-time or fast-developing, as fast dividing embryos are more likely to develop to the blastocyst stage. Specifically, bovine embryos at 48 (Day 2) and 96 (Day 4) hours post fertilization were fixed and separated based on morphological assessment: on-time (Day 2: 2 cell; Day 4: 5-7 cell) or fast-developing (Day 2: 3-7 cell; Day 4: 8-16 cell). Embryos with different developmental rates on Day 2 and Day 4 were correlated with metabolic activity and DNA damage. Confocal microscopy was used to assess metabolic activity by quantification of cellular autofluorescence specific for the endogenous fluorophores NAD(P)H and FAD with a subsequent calculation of the optical redox ratio. Separately, hyperspectral microscopy was employed to assess a broader range of endogenous fluorophores. DNA damage was determined using γH2AX immunohistochemistry. Hyperspectral imaging showed significantly lower abundance of endogenous fluorophores in fast-developing compared to on-time embryos on Day 2, indicating a lower metabolic activity. On Day 4 of development there was no difference in the abundance of FAD between on-time and fast-developing embryos. There was, however, significantly higher levels of NAD(P)H in fast-developing embryos leading to a significantly lower optical redox ratio when compared to on-time embryos. Collectively, these results demonstrate that fast-developing embryos present a 'quiet' metabolic pattern on Day 2 and Day 4 of development, compared to on-time embryos. There was no difference in the level of DNA damage between on-time and fast-developing embryos on either day of development. To our knowledge, this is the first collective use of confocal and hyperspectral imaging in cleavage-stage bovine embryos in the absence of fluorescent tags.


Assuntos
Blastocisto , Transferência Embrionária , Animais , Bovinos , Transferência Embrionária/veterinária , Embrião de Mamíferos , Desenvolvimento Embrionário , Feminino , Fertilização in vitro/veterinária , Microscopia/veterinária , Imagem Óptica/veterinária , Gravidez
2.
Anim Reprod Sci ; 199: 1-14, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30449707

RESUMO

Cyclic adenosine monophosphate (cAMP) is an important molecule in signal transduction within the cell, functioning as a second cell messenger of gonadotrophin stimulation. The concentration of cAMP in cumulus-oocyte complexes (COCs) is known to be controlled through modulation of its synthesis by adenylyl cyclase (AC) and by degradation through the cyclic nucleotide phosphodiesterase (PDE) enzymes. One of the main obstacles for in vitro embryo production is the optimization of reproduction processes that occur in oocyte maturation. The function of cAMP is important in maintaining meiotic arrest in mammalian oocytes. When the oocyte is physically removed from the antral follicle for in vitro maturation (IVM), intra-oocyte cAMP concentrations decrease and spontaneous meiotic resumption begins, due to the depletion of inhibitory factors from the follicle. In many studies, relatively greater cAMP concentrations before IVM has been reported to improve oocyte competence, leading to subsequent benefits in embryonic development in different species. There, therefore, has been an increase in oocyte cAMP concentrations with several treatments and different approaches, such as invasive AC, stimulators of AC activity, PDE inhibitors, and cAMP analogs. The aim of this review is to comprehensively evaluate and provide data related to (i) the use of cAMP modulators during IVM and the effects on completion of meiosis and cytoplasmic reorganization, which are required for development of oocytes with the capacity to contribute to fertilization and subsequent embryonic development; and (ii) the main cAMP modulators and the effects when used in oocyte IVM.


Assuntos
AMP Cíclico/metabolismo , Técnicas de Maturação in Vitro de Oócitos/métodos , Oócitos/citologia , Oogênese , Animais , Animais Domésticos , Feminino , Fertilização in vitro , Técnicas de Maturação in Vitro de Oócitos/veterinária , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Inibidores de Fosfodiesterase/farmacologia , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...