Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Clin Invest ; 53(11): e14069, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37525474

RESUMO

BACKGROUND: The consumption of high-caloric diets strongly contributes to the development of non-communicable diseases (NCDs), including cardiovascular disease, the leading cause of mortality worldwide. Exercise (along with diet intervention) is one of the primary non-pharmacological approaches to promote a healthier lifestyle and counteract the rampant prevalence of NCDs. The present study evaluated the effects of exercise cessation after a short period training on the cardiac metabolic and mitochondrial function of female rats. METHODS: Seven-week-old female Sprague-Dawley rats were fed a control or a high-fat, high-sugar (HFHS) diet and, after 7 weeks, the animals were kept on a sedentary lifestyle or submitted to endurance exercise for 3 weeks (6 days per week, 20-60 min/day). The cardiac samples were analysed 8 weeks after exercise cessation. RESULTS: The consumption of the HFHS diet triggered impaired glucose tolerance, whereas the HFHS diet and physical exercise resulted in different responses in plasma adiponectin and leptin levels. Cardiac mitochondrial respiration efficiency was decreased by the HFHS diet consumption, which led to reduced ATP and increased NAD(P)H mitochondrial levels, which remained prevented by exercise 8 weeks after cessation. Exercise training-induced cardiac adaptations in redox balance, namely increased relative expression of Nrf2 and downstream antioxidant enzymes persist after an eight-week exercise cessation period. CONCLUSIONS: Endurance exercise modulated cardiac redox balance and mitochondrial efficiency in female rats fed a HFHS diet. These findings suggest that exercise may elicit cardiac adaptations crucial for its role as a non-pharmacological intervention for individuals at risk of developing NCDs.

2.
FASEB J ; 35(12): e22010, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34724256

RESUMO

The hypoxia-inducible nuclear-encoded mitochondrial protein NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 4-like 2 (NDUFA4L2) has been demonstrated to decrease oxidative phosphorylation and production of reactive oxygen species in neonatal cardiomyocytes, brain tissue and hypoxic domains of cancer cells. Prolonged local hypoxia can negatively affect skeletal muscle size and tissue oxidative capacity. Although skeletal muscle is a mitochondrial rich, oxygen sensitive tissue, the role of NDUFA4L2 in skeletal muscle has not previously been investigated. Here we ectopically expressed NDUFA4L2 in mouse skeletal muscles using adenovirus-mediated expression and in vivo electroporation. Moreover, femoral artery ligation (FAL) was used as a model of peripheral vascular disease to induce hind limb ischemia and muscle damage. Ectopic NDUFA4L2 expression resulted in reduced mitochondrial respiration and reactive oxygen species followed by lowered AMP, ADP, ATP, and NAD+ levels without affecting the overall protein content of the mitochondrial electron transport chain. Furthermore, ectopically expressed NDUFA4L2 caused a ~20% reduction in muscle mass that resulted in weaker muscles. The loss of muscle mass was associated with increased gene expression of atrogenes MurF1 and Mul1, and apoptotic genes caspase 3 and Bax. Finally, we showed that NDUFA4L2 was induced by FAL and that the Ndufa4l2 mRNA expression correlated with the reduced capacity of the muscle to generate force after the ischemic insult. These results show, for the first time, that mitochondrial NDUFA4L2 is a novel regulator of skeletal muscle mass and force. Specifically, induced NDUFA4L2 reduces mitochondrial activity leading to lower levels of important intramuscular metabolites, including adenine nucleotides and NAD+ , which are hallmarks of mitochondrial dysfunction and hence shows that dysfunctional mitochondrial activity may drive muscle wasting.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Hipóxia/fisiopatologia , Mitocôndrias/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Animais , Proliferação de Células , Complexo I de Transporte de Elétrons/genética , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Espécies Reativas de Oxigênio
3.
Clin Sci (Lond) ; 134(21): 2835-2850, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33146370

RESUMO

Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by synovitis and the presence of serum autoantibodies. In addition, skeletal muscle weakness is a common comorbidity that contributes to inability to work and reduced quality of life. Loss in muscle mass cannot alone account for the muscle weakness induced by RA, but instead intramuscular dysfunction appears as a critical factor underlying the decreased force generating capacity for patients afflicted by arthritis. Oxidative stress and associated oxidative post-translational modifications have been shown to contribute to RA-induced muscle weakness in animal models of arthritis and patients with RA. However, it is still unclear how and which sources of reactive oxygen and nitrogen species (ROS/RNS) that are involved in the oxidative stress that drives the progression toward decreased muscle function in RA. Nevertheless, mitochondria, NADPH oxidases (NOX), nitric oxide synthases (NOS) and phospholipases (PLA) have all been associated with increased ROS/RNS production in RA-induced muscle weakness. In this review, we aim to cover potential ROS sources and underlying mechanisms of oxidative stress and loss of force production in RA. We also addressed the use of antioxidants and exercise as potential tools to counteract oxidative stress and skeletal muscle weakness.


Assuntos
Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Transdução de Sinais , Animais , Humanos , Debilidade Muscular/complicações , Debilidade Muscular/patologia , Oxirredução , Estresse Oxidativo
4.
Behav Brain Res ; 379: 112358, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31733314

RESUMO

Physical exercise has proven to be beneficial to mitigate several deleterious effects associated with neurodegenerative diseases, including Alzheimer's Disease (AD). Here, we investigated the role of long-term exercise as a preventive and therapeutic tool against AD cognitive and behavioral impairments using a sporadic AD-like rat model, established through the administration of streptozotocin (STZ) inside both cerebral ventricles (icv). Six-weeks-old Wistar male rats (56) were divided into groups (either saline or STZ): sedentary (Sed), voluntary physical activity (VPA), VPA + endurance treadmill training (VPA + ET) and VPA + ET only after the injection (VPA + ET-post). Surgeries occurred at 16wks and the animals were sacrificed at 28 wks. VPA, VPA + ET, and VPA + ET-post had continuous access to the running wheels during the entire experimental protocol. VPA + ET (entire protocol) and VPA + ET-post (only after surgical procedure) ran 60 min/d, 25 m/min, 5d/wk in a treadmill. Both ET regimens led to significant improvements in the compromised spatial learning and long-term memory of STZ-infused animals that were not observed neither in the saline Sed nor in VPA STZ groups. General activity patterns and exploration habits were also ameliorated with chronic-exercise in STZ treated animals, while freezing patterns were decreased in these groups. these results were further. Positive alterations were seen in mitochondrial oxygen consumption endpoints (synaptosomal and non-synaptosomal brain mitochondria) that might underlie the neurobehavioral improvements observed. Data suggest that VPA alone was not able to counteract the AD-related deleterious consequences, although when accompanied by endurance training (either lifelong or later-life) may be able to prevent and reverse cognitive and phenotypic impairments associated with AD.


Assuntos
Doença de Alzheimer/terapia , Sintomas Comportamentais/terapia , Cérebro , Treino Aeróbico , Memória de Longo Prazo , Atividade Motora , Condicionamento Físico Animal , Aprendizagem Espacial , Doença de Alzheimer/complicações , Doença de Alzheimer/prevenção & controle , Animais , Sintomas Comportamentais/etiologia , Sintomas Comportamentais/prevenção & controle , Cérebro/metabolismo , Cérebro/fisiopatologia , Modelos Animais de Doenças , Masculino , Memória de Longo Prazo/fisiologia , Atividade Motora/fisiologia , Neurotoxinas/administração & dosagem , Condicionamento Físico Animal/fisiologia , Ratos , Ratos Wistar , Aprendizagem Espacial/fisiologia , Estreptozocina/administração & dosagem
5.
Mitochondrion ; 47: 103-113, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31170523

RESUMO

Doxorubicin (DOX), a widely used and efficient antineoplastic agent, is mainly limited by cardiotoxicity, although other tissues including liver are also affected. The effects of exercise to cope with DOX side-effects has already been studied in the heart and brain, demonstrating successful results. However, the benefits of this non-pharmacological strategy have not been so extensively checked in the liver. We here aimed to ascertain whether exercise could mitigate DOX-induced liver harmful effects using mitochondria as a model for evaluating toxicity. Twenty-four male rats were divided into four groups: SED + SAL (sedentary with saline administration), SED + DOX (sedentary with DOX administration), ET + DOX (endurance-trained with DOX administration) and VPA + DOX (voluntary physical activity with DOX administration). Isolated liver mitochondria were obtained for evaluation of their respiratory activity and transmembrane electrical potential endpoints. Molecular markers of oxidative damage (carbonyls, MDA, aconitase, MnSOD), mitochondrial dynamics (PGC-1α, TFAM, OPA1, DRP1, MFN1) and auto(mito)phagy signaling (p62, LC3, Beclin1, Bcl-2, PINK, Parkin) were measured. Transmission electron microscopy evaluation was used to analyze mitochondrial morphological alterations. When compared to SED + SAL, respiratory function of SED + DOX was compromised. Decreased SOD and aconitase activities and increased MDA content, decreases in PGC-1α, TFAM, OPA1 and MFN1 expressions, and increases in DRP1 and LC3II/LC3I ratio were also observed after DOX administration. However, these alterations were reverted or mitigated in the ET + DOX group. Semi-quantitative and qualitative analyses from microphotographs showed that liver mitochondria of SED + DOX animals were more circular and had lower density, whereas the animals with exercise showed a tendency to revert this phenotype and increase the mitochondrial density. Taken together, our results suggest that physical exercise, particularly ET, positively reversed the deleterious effects caused by DOX administration, such as oxidative damage, mitochondrial dysfunction, and altered mitochondrial dynamics toward fission, thus contributing to increase liver resistance against DOX administration.


Assuntos
Doxorrubicina/efeitos adversos , Fígado/metabolismo , Mitocôndrias Hepáticas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Condicionamento Físico Animal , Transdução de Sinais/efeitos dos fármacos , Animais , Doxorrubicina/farmacologia , Fígado/patologia , Masculino , Mitocôndrias Hepáticas/patologia , Dinâmica Mitocondrial/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
6.
Front Physiol ; 10: 593, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31139096

RESUMO

Free-running wheel (FRW) is an animal exercise model that relies on high-intensity interval moments interspersed with low-intensity or pauses apparently similar to those performed in high-intensity interval training (HIIT). Therefore, this study, conducted over a 12-weeks period, aimed to compare functional, thermographic, biochemical and morphological skeletal and cardiac muscle adaptations induced by FRW and HIIT. Twenty-four male Wistar rats were assigned into three groups: sedentary rats (SED), rats that voluntarily exercise in free wheels (FRW) and rats submitted to a daily HIIT. Functional tests revealed that compared to SED both FRW and HIIT increased the ability to perform maximal workload tests (MWT-cm/s) (45 ± 1 vs. 55 ± 2 and vs. 65 ± 2). Regarding thermographic assays, FRW and HIIT increased the ability to lose heat through the tail during MWT. Histochemical analyzes performed in tibialis anterior (TA) and soleus (SOL) muscles showed a general adaptation toward a more oxidative phenotype in both FRW and HIIT. Exercise increased the percentage of fast oxidative glycolytic (FOG) in medial fields of TA (29.7 ± 2.3 vs. 44.9 ± 4.4 and vs. 45.2 ± 5.3) and slow oxidative (SO) in SOL (73.4 ± 5.7 vs. 99.5 ± 0.5 and vs. 96.4 ± 1.2). HITT decreased fiber cross-sectional area (FCSA-µm2) of SO (4350 ± 286.9 vs. 4893 ± 325 and vs. 3621 ± 237.3) in SOL. Fast glycolytic fibers were bigger across all the TA muscle in FRW and HIIT groups. The FCSA decrease in FOG fibers was accompanied by a circularity decrease of SO from SOL fibers (0.840 ± 0.005 vs. 0.783 ± 0.016 and vs. 0.788 ± 0.010), and a fiber and global field capillarization increase in both FRW and HIIT protocols. Moreover, FRW and HIIT animals exhibited increased cardiac mitochondrial respiratory control ratio with complex I-driven substrates (3.89 ± 0.14 vs. 5.20 ± 0.25 and vs. 5.42 ± 0.37). Data suggest that FRW induces significant functional, physiological, and biochemical adaptations similar to those obtained under an intermittent forced exercise regimen, such as HIIT.

7.
Toxicol Lett ; 280: 57-69, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28818578

RESUMO

The use of the chemotherapeutic drug doxorubicin (DOX) is limited by its toxicity in several organs such as testes. So, we analyzed the effect of endurance treadmill exercise training (EX) performed before sub-chronic DOX treatment on sperm count and motility, testes markers of oxidative damage and apoptosis. Tissue profiling of proteins more susceptible to oxidation was made to identify the molecular pathways regulated by oxidative modifications, as nitration and carbonylation. Twenty-four adult male rats were divided into four groups (n=6/group): sedentary saline (SED+SAL), sedentary sub-chronically injected with DOX (2mg-kg-1 per week, during 7 weeks; SED+DOX), 12 weeks trained saline (EX+SAL) and trained treated with DOX (EX+DOX). DOX treatment started 5 weeks after the beginning of the exercise program. Testes caspase-3, -8 and -9, as well as aconitase activities, the content of malondialdehyde (MDA), sulfhydryl groups (-SH), carbonyl and nitrotyrosine derivatives were determined. Modified proteins were identified by 2D-Western blot followed by MALDI-TOF/TOF mass spectrometry, and bioinformatic analysis was performed to assess the biological processes regulated by these chemical modifications. The decreased sperm motility induced by DOX was not modified by exercise. Significant increases in MDA content in SED+DOX and in caspase-3 and -9 activities in EX+DOX were found. Despite no significant differences in the levels of carbonylated and nitrated proteins, exercise modulated testis proteome susceptibility to oxidation in DOX-treated group, with less modified proteins identified. Zinc finger Ran-binding domain-containing protein 2 (ZRAB2) and AN1-type zinc finger protein 3 (ZFAN3) were among the proteins found oxidativelly modified. Although no marked alterations in testes oxidative damage were noticed, proteomic analysis of oxidativelly modified proteins highlighted the protective role of exercise against oxidative damage of some proteins involved in metabolism and stress response against DOX.


Assuntos
Doxorrubicina/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Condicionamento Físico Animal , Proteoma/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testículo/metabolismo , Animais , Antibióticos Antineoplásicos/toxicidade , Apoptose , Eletroforese em Gel Bidimensional , Masculino , Estresse Oxidativo , Distribuição Aleatória , Ratos , Espectrometria de Massas em Tandem , Transcriptoma/efeitos dos fármacos
8.
Appl Physiol Nutr Metab ; 42(7): 683-693, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28177702

RESUMO

Unaccustomed eccentric contractions induce muscle damage, calcium homeostasis disruption, and mitochondrial alterations. Since exercise and hypoxia are known to modulate mitochondrial function, we aimed to analyze the effects on eccentric exercise-induced muscle damage (EEIMD) in trained rats using 2 recovery protocols based on: (i) intermittent hypobaric hypoxia (IHH) and (ii) IHH followed by exercise. The expression of biomarkers related to mitochondrial biogenesis, dynamics, oxidative stress, and bioenergetics was evaluated. Soleus muscles were excised before (CTRL) and 1, 3, 7, and 14 days after an EEIMD protocol. The following treatments were applied 1 day after the EEIMD: passive normobaric recovery (PNR), 4 h daily exposure to passive IHH at 4000 m (PHR) or IHH exposure followed by aerobic exercise (AHR). Citrate synthase activity was reduced at 7 and 14 days after application of the EEIMD protocol. However, this reduction was attenuated in AHR rats at day 14. PGC-1α and Sirt3 and TOM20 levels had decreased after 1 and 3 days, but the AHR group exhibited increased expression of these proteins, as well as of Tfam, by the end of the protocol. Mfn2 greatly reduced during the first 72 h, but returned to basal levels passively. At day 14, AHR rats had higher levels of Mfn2, OPA1, and Drp1 than PNR animals. Both groups exposed to IHH showed a lower p66shc(ser36)/p66shc ratio than PNR animals, as well as higher complex IV subunit I and ANT levels. These results suggest that IHH positively modulates key mitochondrial aspects after EEIMD, especially when combined with aerobic exercise.


Assuntos
Hipóxia/metabolismo , Mitocôndrias/metabolismo , Condicionamento Físico Animal , Animais , Apoptose , Biomarcadores/metabolismo , Citrato (si)-Sintase/metabolismo , Creatina Quinase/sangue , Determinação de Ponto Final , Metabolismo Energético , GTP Fosfo-Hidrolases , Regulação da Expressão Gênica , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , Mioglobina/sangue , Estresse Oxidativo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Superfície Celular , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo
9.
Appl Physiol Nutr Metab ; 41(3): 298-306, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26905378

RESUMO

Mitochondrial quality control and apoptosis have been described as key components in the pathogenesis of nonalcoholic steatohepatitis (NASH); exercise is recognized as a nonpharmacological strategy to counteract NASH-associated consequences. We aimed to analyze the effect of voluntary physical activity (VPA) and endurance training (ET) against NASH-induced mitochondrial permeability transition pore (mPTP) opening and mitochondrial and cellular quality control deleterious alterations. Forty-eight male Sprague-Dawley rats were divided into standard-diet sedentary (SS, n = 16), standard-diet VPA (n = 8), high-fat diet sedentary (HS, n = 16), and high-fat diet VPA (n = 8). After 9 weeks of diet treatment, half of the SS and HS groups were engaged in an ET program for 8 weeks, 5 days/week, 1 h/day. Liver mPTP susceptibility through osmotic swelling, mPTP-related proteins (cyclophilin D, Sirtuin3, Cofilin-1), markers of mitochondrial biogenesis ((mitochondrial transcription factor A (Tfam) and peroxisome proliferator-activated receptor gamma co-activator protein (PGC-1α)), dynamics (Mitofusin 1 (Mfn1), Mitofusin 2 (Mfn2), Dynamin related protein 1, and Optic atrophy 1)), auto/mitophagy (Beclin-1, microtubule-associated protein 1 light chain 3, p62, PINK1, and Parkin), and apoptotic signaling (Bax, Bcl-2) and caspases-like activities were assessed. HS animals showed an increased susceptibility to mPTP, compromised expression of Tfam, Mfn1, PINK1, and Parkin and an increase in Bax content (HS vs. SS). ET and VPA improved biogenesis-related proteins (PGC-1α) and autophagy signaling (Beclin-1 and Beclin-1/Bcl-2 ratio) and decreased apoptotic signaling (caspases 8 activity, Bax content, and Bax/Bcl-2 ratio). However, only ET decreased mPTP susceptibility and positively modulated Bcl-2, Tfam, Mfn1, Mfn2, PINK1, and Parkin content. In conclusion, exercise reduces the increased susceptibility to mPTP induced by NASH and promotes the increase of auto/mitophagy and mitochondrial fusion towards a protective phenotype.


Assuntos
Fígado/metabolismo , Potencial da Membrana Mitocondrial , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Condicionamento Físico Animal , Animais , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Fígado/patologia , Masculino , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/patologia , Dinâmica Mitocondrial , Poro de Transição de Permeabilidade Mitocondrial , Dilatação Mitocondrial , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Resistência Física , Ratos Sprague-Dawley , Comportamento Sedentário , Transdução de Sinais
10.
Mitochondrion ; 20: 22-33, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25446396

RESUMO

Doxorubicin (DOX) is an anti-cancer agent whose clinical usage results in a cumulative and dose-dependent cardiotoxicity. We have previously shown that exercise performed prior to DOX treatment reduces the resulting cardiac(mito) toxicity. We sought to determine the effects on cardiac mitochondrial toxicity of two distinct chronic exercise models (endurance treadmill training-TM and voluntary free-wheel activity-FW) when used prior and during DOX treatment. Male-young Sprague-Dawley rats were divided into six groups (n=6 per group): SAL+SED (saline sedentary), SAL+TM (12-weeks TM), SAL+FW (12-weeks FW), DOX+SED (7-weeks of chronic DOX treatment 2mg/kg per week), DOX+TM and DOX+FW. DOX administration started 5weeks after the beginning of the exercise protocol. Heart mitochondrial ultrastructural alterations, mitochondrial function (oxygen consumption and membrane potential), semi-quantification of oxidative phosphorylation (OXPHOS) proteins and their in-gel activity, as well as proteins involved in mitochondrial oxidative stress (SIRT3, p66shc and UCP2), biogenesis (PGC1α and TFAM), acetylation and markers for oxidative damage (carbonyl groups, MDA,SH, aconitase, Mn-SOD activity) were evaluated. DOX treatment resulted in ultrastructural and functional alterations and decreased OXPHOS. Moreover, DOX decreased complex I activity and content, mitochondrial biogenesis (TFAM), increased acetylation and oxidative stress. TM and FW prevented DOX-induced alteration in OXPHOS, the increase in oxidative stress, the decrease in complex V activity and in complex I activity and content. DOX-induced decreases in TFAM and SIRT3 content were prevented by TM only. Both chronic models of physical exercise performed before and during the course of sub-chronic DOX treatment translated into an improved mitochondrial bioenergetic fitness, which may result in part from the prevention of mitochondrial oxidative stress and damage.


Assuntos
Antibióticos Antineoplásicos/efeitos adversos , Cardiotoxinas/efeitos adversos , Doxorrubicina/efeitos adversos , Estresse Oxidativo , Condicionamento Físico Animal , Animais , Antibióticos Antineoplásicos/administração & dosagem , Cardiotoxinas/administração & dosagem , Doxorrubicina/administração & dosagem , Metabolismo Energético , Humanos , Masculino , Ratos Sprague-Dawley
11.
Clin Nutr ; 34(2): 241-7, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24746977

RESUMO

BACKGROUND & AIMS: Lieber-DeCarli diet has been used to induce obesity and non-alcoholic steatohepatitis (NASH). As scarce anatomical and clinical-related information on this diet model exists and being exercise an advised strategy to counteract metabolic diseases, we aimed to analyze the preventive (voluntary physical activity - VPA) and therapeutic (endurance training - ET) effect of exercise on clinical/anatomical features of rats fed with Lieber-DeCarli diet. METHODS: In the beginning of the protocol, Sprague-Dawley rats were divided into standard-diet sedentary (SS, n = 20), standard-diet VPA (SVPA, n = 10), high-fat diet sedentary (HS, n = 20) and high-fat diet VPA (HVPA, n = 10) groups. After 9-weeks, half (n = 10) of SS and HS groups were engaged in an ET program (8 wks/5 d/wk/60 min/day). At this time, a blood sample was collected for biochemical analysis. At the end of protocol (17-weeks) anatomic measures were assessed. Heart, liver, femur and visceral fat were weighted and blood was collected again. Liver section was used for histopathological examination. RESULTS: At 17-weeks, high-fat diet increased visceral adiposity (HS vs. SS), which was counteracted by both exercises. However, ET was the only intervention able to diminished obesity-related measures and the histological features of NASH. Moreover, blood analysis at 9 weeks showed that high-fat diet increased ALT, AST, cholesterol and HDL while VLDL and TG levels were decreased (HS vs. SS). Notably, although these parameters were counteracted after 9-weeks of VPA, they were transitory and not observed after 17-weeks. CONCLUSIONS: ET used as a therapeutic tool mitigated the clinical/anatomical-related features induced by Liber-DeCarli diet, thus possibly contributing to control obesity and metabolic disorders.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Terapia por Exercício/métodos , Gordura Intra-Abdominal/patologia , Fígado/fisiopatologia , Atividade Motora , Animais , Modelos Animais de Doenças , Masculino , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento
12.
Int J Biochem Cell Biol ; 54: 163-73, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25063232

RESUMO

Mitochondrial membrane lipid composition is a critical factor in non-alcoholic steatohepatitis (NASH). Exercise is the most prescribed therapeutic strategy against NASH and a potential modulator of lipid membrane. Thus, we aimed to analyze whether physical exercise exerted preventive (voluntary physical activity - VPA) and therapeutic (endurance training - ET) effect on NASH-induced mitochondrial membrane changes. Sprague-Dawley rats (n=36) were divided into standard-diet sedentary (SS, n=12), standard-diet VPA (SVPA, n=6), high-fat diet sedentary (HS, n=12) and high-fat diet VPA (HVPA, n=6). After 9 weeks of diet-specific feeding, half of SS and HS group were engaged in an ET program for 8 weeks/5 day/week/1h/day (SET, HET). Liver mitochondria were isolated for oxygen consumption and transmembrane-electric potential (ΔΨ) assays. Mitochondrial phospholipid classes and fatty acids were quantified through thin layer chromatography and gas chromatography, respectively, while cardiolipin (CL), phosphatidylcholine (PC) phosphatidylethanolamine (PE) and phosphatidylinositol (PI) molecular profile was determined by electrospray mass spectrometry. In parallel with histological signs of NASH, high-fat diet decreased PI, CL and PC/PE ratio, whereas PE and phosphatidic acid content increased in sedentary animals (HS vs. SS). Moreover, a decrease in linolelaidic, monounsaturated fatty acids content and an increase in saturated fatty acids (SFAS) were observed. Along with phospholipidomic alterations, HS animals showed a decrease in respiratory control ratio (RCR), ΔΨ and FCCP-induced uncoupling respiration (HS vs. SS). Both phospholipidomic (PC/PE, SFAS) and mitochondrial respiratory alterations were counteracted by exercise interventions. Exercise used as preventive (VPA) or therapeutic (ET) strategies preserved liver mitochondrial phospholipidomic profile and maintained mitochondrial function in a model of NASH.


Assuntos
Ácidos Graxos/metabolismo , Lipídeos de Membrana/metabolismo , Mitocôndrias Hepáticas/patologia , Membranas Mitocondriais/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Fosfolipídeos/metabolismo , Condicionamento Físico Animal/fisiologia , Animais , Células Cultivadas , Masculino , Mitocôndrias Hepáticas/metabolismo , Membranas Mitocondriais/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Consumo de Oxigênio , Ratos , Ratos Sprague-Dawley
13.
Eur J Clin Invest ; 44(7): 668-77, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24889192

RESUMO

BACKGROUND: Several strategies have been developed to counteract liver injury as a consequence of nonsteroid anti-inflammatory drugs toxicity. Here, we aimed to determine whether physical exercise results in liver mitochondrial protection against in vitro diclofenac toxicity. MATERIAL AND METHODS: Male adult Sprague-Dawley rats were divided into sedentary, 12-week endurance training (ET) and voluntary activity (VPA). In vitro liver mitochondrial function as assessed by oxygen consumption, transmembrane electric potential (ΔΨ) and susceptibility to the mitochondrial permeability transition pore (MPTP) was evaluated in the absence and presence of diclofenac. Mitochondrial oxidative stress markers [MnSOD, aconitase, -SH and MDA, SIRT3, p66shc(Ser36)/p66shc ratio] and apoptotic signalling (caspases 3, 8 and 9, Bax, Bcl-2 and CypD) were assessed. Content of OXPHOS components and qualitative liver morphological evaluation were assessed. RESULTS: Despite no effects of ET and VPA on basal liver mitochondrial oxygen consumption or ΔΨ endpoints, exercised animals showed lower susceptibility to MPTP. Diclofenac-induced decrease in ΔΨ, increased state 4 respiration and susceptibility to MPTP opening were all prevented by exercise. Under untreated conditions, VPA group showed higher aconitase activity, while ET decreased MDA and increased Bax content. VPA decreased p66shc(Ser36), complex III and V OXPHOS subunits. Both ET and VPA increased complex IV OXPHOS subunit, and SIRT3 and Bcl-2 content and decreased caspase 9 activity. Unexpectedly, ET and VPA decreased ANT. CONCLUSIONS: Both chronic physical exercise models augmented the resistance to in vitro diclofenac-induced mitochondrial alterations, including increased MPTP susceptibility, possibly by modulating oxidative stress and MPTP regulators.


Assuntos
Anti-Inflamatórios não Esteroides/toxicidade , Diclofenaco/toxicidade , Mitocôndrias Hepáticas/fisiologia , Doenças Mitocondriais/prevenção & controle , Condicionamento Físico Animal/fisiologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Animais , Biomarcadores/metabolismo , Masculino , Potenciais da Membrana/fisiologia , Microscopia Eletrônica de Transmissão , Mitocôndrias Hepáticas/efeitos dos fármacos , Doenças Mitocondriais/induzido quimicamente , Doenças Mitocondriais/fisiopatologia , Neurotoxinas/farmacologia , Estresse Oxidativo/fisiologia , Consumo de Oxigênio/fisiologia , Ratos Sprague-Dawley , Respiração
14.
Mitochondrion ; 15: 40-51, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24727595

RESUMO

Exercise is considered a non-pharmacological tool against several lifestyle disorders in which mitochondrial dysfunction is involved. The present study aimed to analyze the preventive (voluntary physical activity-VPA) and therapeutic (endurance training-ET) role of exercise against non-alcoholic steatohepatitis (NASH)-induced liver mitochondrial dysfunction. Sixty male Sprague-Dawley rats were divided into standard-diet sedentary (SS, n=20), standard-diet VPA (SVPA, n=10), high-fat diet sedentary (HS, n=20) and high-fat diet VPA (HVPA, n=10). After 9weeks of diet-treatment, half of SS and HS animals were engaged in an ET program (SET and HET) for 8weeks, 5days/week and 60min/day. Liver mitochondrial oxygen consumption and transmembrane-electric potential (ΔΨ) were evaluated in the presence of glutamate-malate (G/M), palmitoyl-malate (P/M) and succinate (S/R). Mitochondrial enzymes activity, lipid and protein oxidation, oxidative phosphorylation (OXPHOS) subunits, cytochrome c, adenine nucleotide translocator (ANT) and uncoupling protein-2 (UCP2) content were assessed. HS groups show the histological features of NASH in parallel with decreased ΔΨ and respiratory control (RCR) and ADP/O ratios (G/M and P/M). A state 3 decrease (G/M and S/R), FCCP-induced uncoupling respiration (S/R) and ANT content were also observed. Both exercise types counteracted oxygen consumption (RCR, ADP/O and FCCP-uncoupling state) impairments and improved ΔΨ (lag-phase). In conclusion, exercise prevented or reverted (VPA and ET, respectively) the bioenergetic impairment induced by NASH, but only ET positively remodeled NASH-induced liver structural damage and abnormal mitochondria. It is possible that alterations in inner membrane integrity and fatty acid oxidation may be related to the observed phenotypes induced by exercise.


Assuntos
Metabolismo Energético , Fígado Gorduroso Alcoólico/fisiopatologia , Fígado/patologia , Fígado/fisiopatologia , Mitocôndrias/patologia , Mitocôndrias/fisiologia , Condicionamento Físico Animal , Animais , Modelos Animais de Doenças , Fígado Gorduroso Alcoólico/terapia , Mitocôndrias/ultraestrutura , Ratos Sprague-Dawley
15.
Mitochondrion ; 13(6): 862-70, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23880173

RESUMO

Liver steatosis (non-alcoholic fatty liver disease, NAFLD) is deemed as the hepatic face of the metabolic syndrome, with both physical inactivity and hypercaloric/unbalanced diet, together with increasing age playing a role as predisposing factors. Consequently, one of the most effective strategies used to counteract this scenario is physical exercise. Given the importance of redox signaling in cellular remodeling, in which mitochondria are closely implicated along with important roles on substrate oxidation, here we briefly review the effects of both acute and chronic forms of physical exercise on the modulation of hepatic redox state, highlighting the relevance of mitochondrial metabolism and function in the induction of liver phenotypes that antagonize metabolic alterations associated with liver metabolic diseases.


Assuntos
Exercício Físico , Hepatopatias/terapia , Mitocôndrias Hepáticas/metabolismo , Humanos , Hepatopatias/metabolismo , Oxirredução , Estresse Oxidativo
16.
Life Sci ; 93(8): 329-37, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23872100

RESUMO

AIMS: Aging and drug-induced side effects may contribute to deteriorate mitochondrial bioenergetics in many tissues, including kidney and liver. One possibility is that the combination of both aging and drug toxicity accelerates the process of mitochondrial degradation, leading to progressive bioenergetic disruption. We therefore analyzed in vitro kidney (KM) and liver (LM) mitochondrial response to salicylate and diclofenac in old and adult animals. MAIN METHODS: Male-Wistar adult (19-wks) and aged (106-wks) rats were used. In vitro endpoints of oxygen consumption and membrane potential were evaluated in non-treated conditions (vehicle) and in the presence of salicylate (0.5mM) and diclofenac (50µM). The susceptibility to calcium-induced permeability transition pore (MPTP) was assessed. Aconitase and C, -SH and MDA contents were measured. Apoptotic signaling was followed by measuring caspase 3, 8 and 9 activities, Bax, Bcl2 and CypD expression. ANT content was semi-quantified. KEY FINDINGS: In general, animal age alone compromised KM state 3 and LM ADP lag phase while resulting in decreased resistance to the MPTP. Aging decreased LM CypD and increased Mn-SOD. Kidney caspase 9-like activity was lower in aged group. Salicylate and diclofenac induced KM and LM dysfunction. ADP lag phase in KM was further increased in the aged group in the presence of diclofenac. No further impairments were observed regarding drug toxicity adding to the aging process. SIGNIFICANCE: Aging impaired KM and LM function despite no detected alterations on oxidative stress and apoptosis. However, aging did not further exacerbate KM and LM frailty induced by salicylate and diclofenac.


Assuntos
Anti-Inflamatórios não Esteroides/toxicidade , Diclofenaco/toxicidade , Mitocôndrias Hepáticas/patologia , Mitocôndrias/patologia , Ácido Salicílico/toxicidade , Fatores Etários , Envelhecimento , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Cálcio/metabolismo , Rim/efeitos dos fármacos , Rim/patologia , Rim/fisiologia , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/fisiologia , Proteínas de Transporte da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Consumo de Oxigênio/efeitos dos fármacos , Consumo de Oxigênio/fisiologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...