Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 225, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383609

RESUMO

Alpine grassland vegetation supports globally important biodiversity and ecosystems that are increasingly threatened by climate warming and other environmental changes. Trait-based approaches can support understanding of vegetation responses to global change drivers and consequences for ecosystem functioning. In six sites along a 1314 m elevational gradient in Puna grasslands in the Peruvian Andes, we collected datasets on vascular plant composition, plant functional traits, biomass, ecosystem fluxes, and climate data over three years. The data were collected in the wet and dry season and from plots with different fire histories. We selected traits associated with plant resource use, growth, and life history strategies (leaf area, leaf dry/wet mass, leaf thickness, specific leaf area, leaf dry matter content, leaf C, N, P content, C and N isotopes). The trait dataset contains 3,665 plant records from 145 taxa, 54,036 trait measurements (increasing the trait data coverage of the regional flora by 420%) covering 14 traits and 121 plant taxa (ca. 40% of which have no previous publicly available trait data) across 33 families.


Assuntos
Ecossistema , Pradaria , Plantas , Biodiversidade , Peru , Clima , Altitude , Incêndios
2.
Nat Ecol Evol ; 2(12): 1918-1924, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30455442

RESUMO

Tropical forest leaf albedo (reflectance) greatly impacts how much energy the planet absorbs; however; little is known about how it might be impacted by climate change. Here, we measure leaf traits and leaf albedo at ten 1-ha plots along a 3,200-m elevation gradient in Peru. Leaf mass per area (LMA) decreased with warmer temperatures along the elevation gradient; the distribution of LMA was positively skewed at all sites indicating a shift in LMA towards a warmer climate and future reduced tropical LMA. Reduced LMA was significantly (P < 0.0001) correlated with reduced leaf near-infrared (NIR) albedo; community-weighted mean NIR albedo significantly (P < 0.01) decreased as temperature increased. A potential future 2 °C increase in tropical temperatures could reduce lowland tropical leaf LMA by 6-7 g m-2 (5-6%) and reduce leaf NIR albedo by 0.0015-0.002 units. Reduced NIR albedo means that leaves are darker and absorb more of the Sun's energy. Climate simulations indicate this increased absorbed energy will warm tropical forests more at high CO2 conditions with proportionately more energy going towards heating and less towards evapotranspiration and cloud formation.


Assuntos
Mudança Climática , Folhas de Planta/fisiologia , Árvores/fisiologia , Clima Tropical , Altitude , Dióxido de Carbono/análise , Florestas , Temperatura Alta , Modelos Teóricos , Peru , Folhas de Planta/química , Árvores/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...