Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 14(6): e0218458, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31216312

RESUMO

p63 is a transcriptional regulator of ectodermal development that is required for basal cell proliferation and stem cell maintenance. p73 is a closely related p53 family member that is expressed in select p63-positive basal cells and can heterodimerize with p63. p73-/- mice lack multiciliated cells and have reduced numbers of basal epithelial cells in select tissues; however, the role of p73 in basal epithelial cells is unknown. Herein, we show that p73-deficient mice exhibit delayed wound healing despite morphologically normal-appearing skin. The delay in wound healing is accompanied by decreased proliferation and increased levels of biomarkers of the DNA damage response in basal keratinocytes at the epidermal wound edge. In wild-type mice, this same cell population exhibited increased p73 expression after wounding. Analyzing single-cell transcriptomic data, we found that p73 was expressed by epidermal and hair follicle stem cells, cell types required for wound healing. Moreover, we discovered that p73 isoforms expressed in the skin (ΔNp73) enhance p63-mediated expression of keratinocyte genes during cellular reprogramming from a mesenchymal to basal keratinocyte-like cell. We identified a set of 44 genes directly or indirectly regulated by ΔNp73 that are involved in skin development, cell junctions, cornification, proliferation, and wound healing. Our results establish a role for p73 in cutaneous wound healing through regulation of basal keratinocyte function.


Assuntos
Ectoderma/metabolismo , Pele/metabolismo , Proteína Tumoral p73/genética , Cicatrização/genética , Animais , Proliferação de Células/genética , Dano ao DNA/genética , Ectoderma/crescimento & desenvolvimento , Células Epiteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Folículo Piloso/crescimento & desenvolvimento , Folículo Piloso/metabolismo , Humanos , Queratinócitos/metabolismo , Camundongos , Camundongos Knockout , Análise de Célula Única , Pele/crescimento & desenvolvimento , Pele/lesões , Nicho de Células-Tronco/genética , Transativadores/genética
2.
iScience ; 8: 236-249, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30340069

RESUMO

We report that p73 is expressed in ovarian granulosa cells and that loss of p73 leads to attenuated follicle development, ovulation, and corpus luteum formation, resulting in decreased levels of circulating progesterone and defects in mammary gland branching. Ectopic progesterone in p73-deficient mice completely rescued the mammary branching and partially rescued the ovarian follicle development defects. Performing RNA sequencing (RNA-seq) on transcripts from murine wild-type and p73-deficient antral follicles, we discovered differentially expressed genes that regulate biological adhesion programs. Through modulation of p73 expression in murine granulosa cells and transformed cell lines, followed by RNA-seq and chromatin immunoprecipitation sequencing, we discovered p73-dependent regulation of a gene set necessary for cell adhesion and migration and components of the focimatrix (focal intra-epithelial matrix), a basal lamina between granulosa cells that promotes follicle maturation. In summary, p73 is essential for ovarian folliculogenesis and functions as a key regulator of a gene network involved in cell-to-cell adhesion and migration.

3.
Artigo em Inglês | MEDLINE | ID: mdl-27570841

RESUMO

Normal human hematopoietic stem and progenitor cells (HPC) lose expression of MLH1, an important mismatch repair (MMR) pathway gene, with age. Loss of MMR leads to replication dependent mutational events and microsatellite instability observed in secondary acute myelogenous leukemia and other hematologic malignancies. Epigenetic CpG methylation upstream of the MLH1 promoter is a contributing factor to acquired loss of MLH1 expression in tumors of the epithelia and proximal mucosa. Using single molecule high-throughput bisulfite sequencing we have characterized the CpG methylation landscape from -938 to -337 bp upstream of the MLH1 transcriptional start site (position +0), from 30 hematopoietic colony forming cell clones (CFC) either expressing or not expressing MLH1. We identify a correlation between MLH1 promoter methylation and loss of MLH1 expression. Additionally, using the CpG site methylation frequencies obtained in this study we were able to generate a classification algorithm capable of sorting the expressing and non-expressing CFC. Thus, as has been previously described for many tumor cell types, we report for the first time a correlation between the loss of MLH1 expression and increased MLH1 promoter methylation in CFC derived from CD34+ selected hematopoietic stem and progenitor cells.

4.
Cell Rep ; 14(10): 2289-300, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26947080

RESUMO

We report that p73 is expressed in multiciliated cells (MCCs), is required for MCC differentiation, and directly regulates transcriptional modulators of multiciliogenesis. Loss of ciliary biogenesis provides a unifying mechanism for many phenotypes observed in p73 knockout mice including hydrocephalus; hippocampal dysgenesis; sterility; and chronic inflammation/infection of lung, middle ear, and sinus. Through p73 and p63 ChIP-seq using murine tracheal cells, we identified over 100 putative p73 target genes that regulate MCC differentiation and homeostasis. We validated Foxj1, a transcriptional regulator of multiciliogenesis, and many other cilia-associated genes as direct target genes of p73 and p63. We show p73 and p63 are co-expressed in a subset of basal cells and suggest that p73 marks these cells for MCC differentiation. In summary, p73 is essential for MCC differentiation, functions as a critical regulator of a transcriptome required for MCC differentiation, and, like p63, has an essential role in development of tissues.


Assuntos
Cílios/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Redes Reguladoras de Genes , Pulmão/metabolismo , Proteína Tumoral p73/metabolismo , Animais , Bronquíolos/metabolismo , Bronquíolos/patologia , Diferenciação Celular , Células Cultivadas , Cílios/patologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Epitélio/metabolismo , Epitélio/patologia , Feminino , Fatores de Transcrição Forkhead/genética , Pulmão/citologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fosfoproteínas/deficiência , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Interferência de RNA , Análise de Sequência de RNA , Traqueia/metabolismo , Traqueia/patologia , Transativadores/deficiência , Transativadores/genética , Transativadores/metabolismo , Transcriptoma , Proteína Tumoral p73/deficiência , Proteína Tumoral p73/genética
5.
Blood ; 120(16): 3229-36, 2012 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-22740444

RESUMO

Hematopoietic stem and progenitor cells (HPCs) are necessary for long-term survival. Genomic instability and persistent DNA damage may cause loss of adult stem cell function. The mismatch repair (MMR) pathway increases replication fidelity and defects have been implicated in malignant hematopoietic diseases. Little, however, is known about the role MMR pathway failure plays in the aging process of human HPCs. We hypothesized that loss of MMR occurs in HPCs as a process of human aging. We examined microsatellite instability and expression of the MMR genes MutL homologue 1 (MLH1) and MutS homologue 2 (MSH2) in HPCs and colony-forming cell-derived clones (CFCs) from human donors aged 0 to 86 years. CFCs from donors > 45 years had a greater frequency of microsatellite instability and CD34(+) progenitors lacking MLH1 expression and protein than individuals ≤ 45 years. Loss of MSH2 did not correlate with age. Thus, a potentially early event in the normal human aging process is microsatellite instability accumulation in normal human HPCs associated with the loss of MLH1 protein expression.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Envelhecimento/patologia , Células-Tronco Hematopoéticas/metabolismo , Instabilidade de Microssatélites , Proteína 2 Homóloga a MutS/metabolismo , Proteínas Nucleares/metabolismo , Células-Tronco/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/genética , Western Blotting , Criança , Pré-Escolar , Ensaio de Unidades Formadoras de Colônias , Feminino , Citometria de Fluxo , Humanos , Técnicas Imunoenzimáticas , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Proteína 1 Homóloga a MutL , Proteína 2 Homóloga a MutS/genética , Proteínas Nucleares/genética , Prognóstico , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...