Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 11(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37270181

RESUMO

BACKGROUND: Development of interleukin (IL)-2-dependent antitumor responses focus on targeting the intermediate affinity IL-2R to stimulate memory-phenotypic CD8+ T and natural killer (NK) cells while minimizing regulatory T cell (Treg) expansion. However, this approach may not effectively engage tumor-specific T effector cells. Since tumor-antigen specific T cells upregulate the high-affinity IL-2R, we tested an IL-2 biologic, mouse IL-2/CD25, with selectivity toward the high-affinity IL-2R to support antitumor responses to tumors that vary in their immunogenicity. METHODS: Mice were first implanted with either CT26, MC38, B16.F10, or 4T1 and after a tumor mass developed, they were treated with high-dose (HD) mouse (m)IL-2/CD25 alone or in combination with anti-programmed cell death protein-1 (PD-1) checkpoint blockade. Tumor growth was monitored and in parallel the immune signature in the tumor microenvironment (TME) was determined by a combination of multiparameter flow cytometry, functional assays, and enumeration of tumor-reactive T cells. RESULTS: We show that HD mIL-2/CD25, which preferentially stimulates the high-affinity IL-2R, but not IL-2/anti-IL-2 complexes with preferential activity toward the intermediate-affinity IL-2R, supports vigorous antitumor responses to immunogenic tumors as a monotherapy that were enhanced when combined with anti-PD-1. Treatment of CT26-bearing mice with HD mIL-2/CD25 led to a high CD8+:Treg ratio in the TME, increased frequency and function of tumor-specific CD8+ T effector cells with a less exhausted phenotype, and antitumor memory responses. CONCLUSIONS: Targeting the high-affinity IL-2R on tumor-specific T cells with HD mIL-2/CD25 alone or with PD-1 blockade supports antitumor responses, where the resulting memory response may afford long-term protection against tumor re-emergence.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Camundongos , Animais , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Linfócitos T Reguladores , Células Matadoras Naturais , Imunoterapia , Microambiente Tumoral
2.
BMC Immunol ; 22(1): 79, 2021 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-34922462

RESUMO

BACKGROUND: Interleukin (IL)-15 is a proinflammatory T-cell growth factor overexpressed in several autoimmune diseases such as rheumatoid arthritis. Our initial strategy to neutralize the increased levels of IL-15 consisted in a vaccine candidate based on the recombinant modified human IL-15 (mhIL-15) mixed with the alum adjuvant. A previous study in non-human primates Macaca fascicularis has shown that vaccination induces neutralizing antibodies against native IL-15, without affecting animal behavior, clinical status, or the percentage of IL-15-dependent cell populations. However, the mhIL-15 used as an antigen was active in the IL-2-dependent cytotoxic T-cell line CTLL-2, which could hinder its therapeutic application. The current article evaluated the immunogenicity in African green monkeys of a vaccine candidate based on IL-15 mutant D8SQ108S, an inactive form of human IL-15. RESULTS: IL-15 D8SQ108S was inactive in the CTLL-2 bioassay but was able to competitively inhibit the biological activity of human IL-15. Immunization with 200 µg of IL-15 mutant combined with alum elicited anti-IL-15 IgG antibodies after the second and third immunizations. The median values of anti-IL-15 antibody titers were slightly higher than those generated in animals immunized with 200 µg of mhIL-15. The highest antibody titers were induced after the third immunization in monkeys vaccinated with 350 µg of IL-15 D8SQ108S. In addition, sera from immunized animals inhibited the biological activity of human IL-15 in CTLL-2 cells. The maximum neutralizing effect was observed after the third immunization in sera of monkeys vaccinated with the highest dose of the IL-15 mutant. These sera also inhibited the proliferative activity of simian IL-15 in the CTLL-2 bioassay and did not affect the IL-2-induced proliferation of the aforementioned T-cell line. Finally, it was observed that vaccination neither affects the animal behavior nor the general clinical parameters of immunized monkeys. CONCLUSION: Immunization with inactive IL-15 D8SQ108S mixed with alum generated neutralizing antibodies specific for human IL-15 in African green monkeys. Based on this fact, the current vaccine candidate could be more effective than the one based on biologically active mhIL-15 for treating autoimmune disorders involving an uncontrolled overproduction of IL-15.


Assuntos
Interleucina-15/imunologia , Linfócitos T/imunologia , Vacinas/imunologia , Compostos de Alúmen , Animais , Anticorpos Neutralizantes/metabolismo , Proliferação de Células , Chlorocebus aethiops , Citotoxicidade Imunológica , Humanos , Imunização , Imunogenicidade da Vacina , Interleucina-15/genética , Camundongos , Mutação/genética
3.
J Immunother Cancer ; 9(9)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34475132

RESUMO

BACKGROUND: Immunization with tumor neoantigens is a promising vaccine approach to promote antitumor immunity due to their high immunogenicity, lack of expression in normal tissue, and preferential induction of tumor neoantigen-specific T cells, which are central mediators of the anti-cancer response. A drawback to targeting tumor neoantigen-specific T cells is that these cells are found at a low frequency in patients with cancer, limiting their therapeutic benefit. Interleukin-2 (IL-2) promotes expansion and persistence of tumor-reactive T cells. However, its clinical use has been hampered by toxicities arising from its multiple cellular targets. Thus, new engineered IL-2 receptor (IL-2R) agonists with distinctive cell type selectivity have been designed to harness the potential of IL-2 for tumor immunotherapy. METHODS: We investigated the potential to amplify neoantigen-specific CD4+ and CD8+ T cell immune responses to promote antitumor immunity through vaccination with tumor neoantigens. Following T cell receptor (TCR)-mediated induction of the high-affinity IL-2R on these T cells, amplification of the neoantigen-specific T cell response was achieved using a high dose of the mouse IL-2/CD25 (mIL-2/CD25) fusion protein, an IL-2R agonist with more favorable pharmacokinetics and pharmacodynamics than IL-2 and selectivity toward the high-affinity IL-2R. RESULTS: Administration of a high dose of mIL-2/CD25 shortly after antigen-dependent induction of the high-affinity IL-2R amplified the numbers and function of TCR transgenic tumor-reactive tyrosinase-related protein-1 (TRP-1) CD4+ T cells, leading to antitumor immunity to B16-F10 melanoma. This approach was adapted to amplify endogenous polyclonal B16-F10 neoantigen-specific T cells. Maximal expansion of these cells required prime/boost neoantigen vaccinations, where mIL-2/CD25 was optimal when administered only after the boosting steps. The ensuing mIL-2/CD25-driven immune response supported antitumor immunity to B16-F10 and was more effective than treatment with a similar amount of IL-2. Optimal antitumor effects required amplification of CD4+ and CD8+ neoantigen-specific T cells. High-dose mIL-2/CD25 supported a tumor microenvironment with higher numbers of CD4+ and CD8+ T effectors cells with increased granzyme B expression and importantly a more robust expansion of neoantigen-specific T cells. CONCLUSION: These results indicate that neoantigen-based vaccines are optimized by potentiating IL-2R signaling in CD4+ and CD8+ neoantigen-reactive T cells by using high-dose mIL-2/CD25, leading to more effective tumor clearance.


Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Vacinas Anticâncer/imunologia , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Neoplasias/genética , Receptores de Interleucina-2/metabolismo , Linfócitos T/metabolismo , Animais , Feminino , Humanos , Masculino , Camundongos , Neoplasias/patologia
4.
Cancer Immunol Immunother ; 70(4): 909-921, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33037893

RESUMO

High-dose IL-2 induces cancer regression but its therapeutic use is limited due to high toxicities resulting from its broad cell targeting. In one strategy to overcome this limitation, IL-2 has been modified to selectively target the intermediate affinity IL-2R that broadly activates memory-phenotypic CD8+ T and NK cells, while minimizing Treg-associated tolerance. In this study, we modeled an alternative strategy to amplify tumor antigen-specific TCR transgenic CD8+ T cells through limited application of a long-acting IL-2 fusion protein, mIL-2/mCD25, which selectively targets the high-affinity IL-2R. Here, mice were vaccinated with a tumor antigen and high-dose mIL-2/mCD25 was applied to coincide with the induction of the high affinity IL-2R on tumor-specific T cells. A single high dose of mIL-2/mCD25, but not an equivalent amount of IL-2, amplified the frequency and function of tumor-reactive CD8+ T effector (Teff) and memory cells. These mIL-2/mCD25-dependent effects relied on distinctive requirements for TLR signals during priming of CD8+ tumor-specific T cells. The mIL-2/mCD25-amplified tumor-reactive effector and memory T cells supported long-lasting antitumor responses to B16-F10 melanoma. This regimen only transiently increased Tregs, yielding a favorable Teff-Treg ratio within the tumor microenvironment. Notably, mIL-2/mCD25 did not increase non-tumor-specific Teff or NK cells within tumors, further substantiating the specificity of mIL-2/mCD25 for tumor antigen-activated T cells. Thus, the selectivity and persistence of mIL-2/mCD25 in conjunction with a tumor vaccine supports antitumor immunity through a mechanism that is distinct from recombinant IL-2 or IL-2-based biologics that target the intermediate affinity IL-2R.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Subunidade alfa de Receptor de Interleucina-2/administração & dosagem , Interleucina-2/administração & dosagem , Células Matadoras Naturais/imunologia , Melanoma Experimental/imunologia , Proteínas Recombinantes de Fusão/administração & dosagem , Linfócitos T Reguladores/imunologia , Animais , Antígenos de Neoplasias , Feminino , Humanos , Interleucina-2/imunologia , Subunidade alfa de Receptor de Interleucina-2/imunologia , Masculino , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Recombinantes de Fusão/imunologia , Transdução de Sinais , Microambiente Tumoral
5.
Diabetes ; 69(11): 2400-2413, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32843568

RESUMO

Low-dose interleukin-2 (IL-2) represents a new therapeutic approach to regulate immune homeostasis to promote immune tolerance in patients with autoimmune diseases, including type 1 diabetes. We have developed a new IL-2-based biologic, an IL-2/CD25 fusion protein, with greatly improved pharmacokinetics and pharmacodynamics when compared with recombinant IL-2 to enhance this type of immunotherapy. In this study, we show that low-dose mouse IL-2/CD25 (mIL-2/CD25), but not an equivalent amount of IL-2, prevents the onset of diabetes in NOD mice and controls diabetes in hyperglycemic mice. mIL-2/CD25 acts not only to expand regulatory T cells (Tregs) but also to increase their activation and migration into lymphoid tissues and the pancreas. Lower incidence of diabetes is associated with increased serum levels of IL-10, a cytokine readily produced by activated Tregs. These effects likely act in concert to lower islet inflammation while increasing Tregs in the remaining inflamed islets. mIL-2/CD25 treatment is also associated with lower anti-insulin autoantibody levels in part by inhibition of T follicular helper cells. Thus, long-acting mIL-2/CD25 represents an improved IL-2 analog that persistently elevates Tregs to maintain a favorable Treg/effector T cell ratio that limits diabetes by expansion of activated Tregs that readily migrate into lymphoid tissues and the pancreas while inhibiting autoantibodies.


Assuntos
Diabetes Mellitus/metabolismo , Subunidade alfa de Receptor de Interleucina-2 , Interleucina-2/farmacologia , Receptores de Interleucina-2/metabolismo , Transdução de Sinais/fisiologia , Animais , Autoanticorpos , Feminino , Humanos , Interleucina-2/química , Camundongos , Camundongos Endogâmicos , Proteínas Recombinantes de Fusão/farmacologia , Subpopulações de Linfócitos T/efeitos dos fármacos
6.
J Pept Sci ; 24(4-5): e3078, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29656472

RESUMO

Interleukin (IL)-15 is an inflammatory cytokine that constitutes a validated therapeutic target in some immunopathologies, including rheumatoid arthritis (RA). Previously, we identified an IL-15 antagonist peptide named [K6T]P8, with potential therapeutic application in RA. In the current work, the metabolic stability of this peptide in synovial fluids from RA patients was studied. Moreover, [K6T]P8 peptide was labeled with 99m Tc to investigate its stability in human plasma and its biodistribution pattern in healthy rats. The biological activity of [K6T]P8 peptide and its dimer was evaluated in CTLL-2 cells, using 3 different additives to improve the solubility of these peptides. The half-life of [K6T]P8 in human synovial fluid was 5.88 ± 1.73 minutes, and the major chemical modifications included peptide dimerization, cysteinylation, and methionine oxidation. Radiolabeling of [K6T]P8 with 99m Tc showed a yield of approximately 99.8%. The 99m Tc-labeled peptide was stable in a 30-fold molar excess of cysteine and in human plasma, displaying a low affinity to plasma proteins. Preliminary biodistribution studies in healthy Wistar rats suggested a slow elimination of the peptide through the renal and hepatic pathways. Although citric acid, sucrose, and Tween 80 enhanced the solubility of [K6T]P8 peptide and its dimer, only the sucrose did not interfere with the in vitro proliferation assay used to assess their biological activity. The results here presented, reinforce nonclinical characterization of the [K6T]P8 peptide, a potential agent for the treatment of RA and other diseases associated with IL-15 overexpression.


Assuntos
Artrite Reumatoide/sangue , Interleucina-15/antagonistas & inibidores , Peptídeos/síntese química , Tecnécio/química , Animais , Linhagem Celular , Humanos , Técnicas In Vitro , Camundongos , Peptídeos/química , Peptídeos/farmacocinética , Estabilidade Proteica , Ratos , Ratos Wistar , Líquido Sinovial/química , Distribuição Tecidual
7.
Prep Biochem Biotechnol ; 47(9): 889-900, 2017 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-28816622

RESUMO

Recombinant simian IL-15 (siIL-15) was obtained for the preclinical assessment of an anti-human IL-15 vaccine. For this purpose, the cDNA from peripheral blood mononuclear cells of a Macaca fascicularis monkey was cloned into a pIL-2 vector. The siIL-15 was expressed in Escherichia coli strain W3110 as an insoluble protein which accounted for 13% of the total cellular proteins. Inclusion bodies were solubilized in an 8 M urea solution, which was purified by ion exchange and reverse phase chromatography up to 92% purity. The protein identity was validated by electrospray ionization-mass spectrometry, confirming the presence of the amino acids which distinguish the siIL-15 from human IL-15. The purified siIL-15 stimulates the proliferation of cytotoxic T-lymphocytes line (CTLL)-2 and Kit 225 cells with EC50 values of 3.1 and 32.5 ng/mL, respectively. Antisera from modified human IL-15-immunized macaques were reactive to human and simian IL-15 in enzyme-linked immunosorbent assays. Moreover, the anti-human IL-15 antibodies from immune sera inhibited siIL-15 activity in CTLL-2 and Kit 225 cells, supporting the activity and purity of recombinant siIL-15. These results indicate that the recombinant siIL-15 is biologically active in two IL-15-dependent cell lines, and it is also suitable for the preclinical evaluation of an IL-15-based therapeutic vaccine.


Assuntos
Interleucina-15/genética , Macaca fascicularis/genética , Vacinas Sintéticas/genética , Animais , Linhagem Celular , Clonagem Molecular/métodos , Escherichia coli/genética , Humanos , Interleucina-15/imunologia , Macaca fascicularis/imunologia , Camundongos , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Linfócitos T Citotóxicos/imunologia , Vacinas Sintéticas/imunologia
8.
BMC Immunol ; 17(1): 30, 2016 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-27671547

RESUMO

BACKGROUND: Interleukin-15 is an immunostimulatory cytokine overexpressed in several autoimmune and inflammatory diseases such as Rheumatoid Arthritis, psoriasis and ulcerative colitis; thus, inhibition of IL-15-induced signaling could be clinically beneficial in these disorders. Our approach to neutralize IL-15 consisted in active immunization with structurally modified human IL-15 (mhIL-15) with the aim to induce neutralizing antibodies against native IL-15. In the present study, we characterized the antibody response in Macaca fascicularis, non-human primates that were immunized with a vaccine candidate containing mhIL-15 in Aluminum hydroxide (Alum), Montanide and Incomplete Freund's Adjuvant. RESULTS: Immunization with mhIL-15 elicited a specific antibodies response that neutralized native IL-15-dependent biologic activity in a CTLL-2 cell proliferation assay. The highest neutralizing response was obtained in macaques immunized with mhIL-15 adjuvanted in Alum. This response, which was shown to be transient, also inhibited the activity of simian IL-15 and did not affect the human IL-2-induced proliferation of CTLL-2 cells. Also, in a pool of synovial fluid cells from two Rheumatoid Arthritis patients, the immune sera slightly inhibited TNF-α secretion. Finally, it was observed that this vaccine candidate neither affect animal behavior, clinical status, blood biochemistry nor the percentage of IL-15-dependent cell populations, specifically CD56+ NK and CD8+ T cells. CONCLUSION: Our results indicate that vaccination with mhIL-15 induced neutralizing antibodies to native IL-15 in non-human primates. Based on this fact, we propose that this vaccine candidate could be potentially beneficial for treatment of diseases where IL-15 overexpression is associated with their pathogenesis.

9.
BMC Musculoskelet Disord ; 16: 51, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25879761

RESUMO

BACKGROUND: Pro-inflammatory cytokines are directly implicated in the pathogenesis of Rheumatoid arthritis (RA). Variable clinical response to cytokine targeted therapies as TNFalpha and IL-6, strongly highlights the heterogeneity of inflammatory process in RA. Another cytokine, IL-15 has also been related to the inflammatory process in RA. Recently we described for the first time, the presence of its specific receptor, IL-15Ralpha, in synovial fluid (SF). The aim of this work was to compare the expression profile of IL-15Ralpha, its ligand IL-15, TNFalpha and IL-6 and how these cytokines are correlated in SF from RA patients taking as a reference Osteoarthritis (OA), an articular but not autoimmune disease. METHODS: Synovial fluids were obtained from the knee joints of 60 patients, 30 with confirmed diagnosis of RA and 30 with OA diagnosis. The levels of TNFalpha, IL-6, IL-15 and IL-15Ralpha were measured by ELISA. A statistical analysis was performed with GraphPad Prism v5.0 using the Mann-Whitney U test and Spearman's rank correlation. A cluster analysis was run in MeV software v4.9.0 and differences across clusters were evaluated by an ANOVA including post-test analysis. RESULTS: We found higher and significant levels of TNFalpha, IL-6 and IL-15Ralpha but not of IL-15 in RA compared with the OA group. Additionally, a high inter-individual variability in the levels of these 4 cytokines was observed in RA, although we identified 4 patients' subgroups by cluster analysis of cytokines concentration in SF. We also found a positive correlation between IL-15Ralpha-IL-6 and IL-15Ralpha-IL-15, but not for other pairs of cytokines in RA. In addition we found correlation between the value of IL-15Ralpha in SF and disease activity score, DAS28. CONCLUSIONS: In our current work we found a high inter-individual variability in the levels of TNFalpha, IL-6, IL-15 and IL-15Ralpha in SF of RA patients and were identified four principal clusters of cytokines concentration in SF, suggesting the importance of identifying disease subset of patients for personalized treatment. Finally, we found a correlation between IL-15Ralpha-IL-6, IL-15Ralpha-IL-15, but we did not find any correlation between other pairs of studied cytokines in SF.


Assuntos
Artrite Reumatoide/imunologia , Mediadores da Inflamação/análise , Interleucina-15/análise , Interleucina-6/análise , Articulação do Joelho/imunologia , Receptores de Interleucina-15/análise , Líquido Sinovial/imunologia , Fator de Necrose Tumoral alfa/análise , Adulto , Idoso , Artrite Reumatoide/diagnóstico , Biomarcadores/análise , Estudos de Casos e Controles , Análise por Conglomerados , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Osteoartrite do Joelho/diagnóstico , Osteoartrite do Joelho/imunologia
10.
Arthritis ; 2012: 943156, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22888423

RESUMO

Rheumatoid arthritis (RA) is an autoimmune and inflammatory disease in which many cytokines have been implicated. In particular, IL-15 is a cytokine involved in the inflammatory processes and bone loss. The aim of this study was to investigate the existence in synovial fluid of soluble IL-15Rα, a private receptor subunit for IL-15 which may act as an enhancer of IL-15-induced proinflammatory cytokines. Soluble IL-15Rα was quantified by a newly developed enzyme-linked immunosorbent assay (ELISA) in samples of synovial fluid from patients with RA and osteoarthritis (OA). The levels of IL-15Rα were significantly increased in RA patients compared to OA patients. Also, we studied the presence of membrane-bound IL-15 in cells from synovial fluids, another element necessary to induce pro-inflammatory cytokines through reverse signaling. Interestingly, we found high levels of IL-6 related to high levels of IL-15Rα in RA but not in OA. Thus, our results evidenced presence of IL-15Rα in synovial fluids and suggested that its pro-inflammatory effect could be related to induction of IL-6.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...