Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(3)2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-31991781

RESUMO

The ventral tegmental area (VTA) plays an important role in the reward and motivational processes that facilitate the development of drug addiction. Presynaptic α1-AR activation modulates glutamate and Gamma-aminobutyric acid (GABA) release. This work elucidates the role of VTA presynaptic α1-ARs and their modulation on glutamatergic and GABAergic neurotransmission during cocaine sensitization. Excitatory and inhibitory currents (EPSCs and IPSCs) measured by a whole cell voltage clamp show that α1-ARs activation increases EPSCs amplitude after 1 day of cocaine treatment but not after 5 days of cocaine injections. The absence of a pharmacological response to an α1-ARs agonist highlights the desensitization of the receptor after repeated cocaine administration. The desensitization of α1-ARs persists after a 7-day withdrawal period. In contrast, the modulation of α1-ARs on GABA neurotransmission, shown by decreases in IPSCs' amplitude, is not affected by acute or chronic cocaine injections. Taken together, these data suggest that α1-ARs may enhance DA neuronal excitability after repeated cocaine administration through the reduction of GABA inhibition onto VTA dopamine (DA) neurons even in the absence of α1-ARs' function on glutamate release and protein kinase C (PKC) activation. α1-AR modulatory changes in cocaine sensitization increase our knowledge of the role of the noradrenergic system in cocaine addiction and may provide possible avenues for therapeutics.


Assuntos
Cocaína/metabolismo , Neurônios Dopaminérgicos/metabolismo , Ácido Glutâmico/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Área Tegmentar Ventral/citologia , Área Tegmentar Ventral/metabolismo , Ácido gama-Aminobutírico/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Cocaína/administração & dosagem , Transtornos Relacionados ao Uso de Cocaína/etiologia , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Masculino , Modelos Biológicos , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos
3.
Neurochem Int ; 125: 91-98, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30794847

RESUMO

The Ih is a mixed depolarizing current present in neurons which, upon activation by hyperpolarization, modulates neuronal excitability in the mesocorticolimbic (MCL) system, an area which regulates emotions such as pleasure, reward, and motivation. Its biophysical properties are determined by HCN protein expression profiles, specifically HCN subunits 1-4. Previously, we reported that cocaine-induced behavioral sensitization increases HCN2 protein expression in all MCL areas with the Ventral Tegmental Area (VTA) showing the most significant increase. Recent evidence suggests that HCN4 also has an important expression in the MCL system. Although there is a significant expression of HCN channels in the MCL system their role in addictive processes is largely unknown. Thus, in this study we aim to compare HCN2 and HCN4 expression profiles and their cellular compartmental distribution in the MCL system, before and after cocaine sensitization. Surface/intracellular (S/I) ratio analysis indicates that VTA HCN2 subunits are mostly expressed in the cell surface in contrast to other areas tested. Our findings demonstrate that after cocaine sensitization, the HCN2 S/I ratio in the VTA was decreased whereas in the Prefrontal Cortex it was increased. In addition, HCN4 total expression in the VTA was decreased after cocaine sensitization, although the S/I ratio was not altered. Together, these results demonstrate differential cocaine effects on HCN2 and HCN4 protein expression profiles and therefore suggest a diverse Ih modulation of cellular activity during cocaine addictive processes.


Assuntos
Córtex Cerebral/metabolismo , Cocaína/farmacologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/biossíntese , Sistema Límbico/metabolismo , Canais de Potássio/biossíntese , Animais , Córtex Cerebral/efeitos dos fármacos , Expressão Gênica , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Sistema Límbico/efeitos dos fármacos , Masculino , Canais de Potássio/genética , Subunidades Proteicas/biossíntese , Subunidades Proteicas/genética , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
4.
Neuroscience ; 392: 129-140, 2018 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-30243909

RESUMO

Chronic cocaine exposure produces enduring neuroadaptations in the brain's reward system. Persistence of early cocaine-evoked neuroadaptations in the ventral tegmental area (VTA) is necessary for later synaptic alterations in the nucleus accumbens (NAc), suggesting a temporal sequence of neuroplastic changes between these two areas. However, the molecular nature of the signal that mediates this sequential event is unknown. Here we used the behavioral sensitization model and the aPKC inhibitor of late-phase LTP maintenance, ZIP, to investigate if a persistent increase in AMPA/NMDA ratio plays a role in the molecular mechanism that allows VTA neuroadaptations to induce changes in the NAc. Results showed that intra-VTA ZIP microinfusion successfully blocked cocaine-evoked synaptic enhancement in the VTA and the expected AMPA/NMDA ratio decrease in the NAc following cocaine sensitization. ZIP microinfusions also blocked the expected AMPA/NMDA ratio increase in the NAc following cocaine withdrawal. These results suggest that a persistent increase in AMPA/NMDA ratio, mediated by aPKCs, could be the molecular signal that enables the VTA to elicit synaptic alterations in the NAc following cocaine administration.


Assuntos
Cocaína/administração & dosagem , Potenciação de Longa Duração/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Proteína Quinase C/metabolismo , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Área Tegmentar Ventral/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Masculino , Núcleo Accumbens/efeitos dos fármacos , Ratos Sprague-Dawley , Área Tegmentar Ventral/efeitos dos fármacos
5.
J Mol Neurosci ; 50(1): 234-45, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23203153

RESUMO

Alteration of the biological activity among neuronal components of the mesocorticolimbic (MCL) system has been implicated in the pathophysiology of drug abuse. Changes in the electrophysiological properties of neurons involved in the reward circuit seem to be of utmost importance in addiction. The hyperpolarization-activated cyclic nucleotide current, I h, is a prominent mixed cation current present in neurons. The biophysical properties of the I h and its potential modulatory role in cell excitability depend on the expression profile of the hyperpolarization-activated cyclic nucleotide gated channel (HCN) subunits. We investigated whether cocaine-induced behavioral sensitization, an animal model of drug addiction, elicits region-specific changes in the expression of the HCN2 channel's subunit in the MCL system. Tissue samples from the ventral tegmental area, prefrontal cortex, nucleus accumbens, and hippocampus were analyzed using Western blot. Our findings demonstrate that cocaine treatment induced a significant increase in the expression profile of the HCN2 subunit in both its glycosylated and non-glycosylated protein isoforms in all areas tested. The increase in the glycosylated isoform was only observed in the ventral tegmental area. Together, these data suggest that the observed changes in MCL excitability during cocaine addiction might be associated with alterations in the subunit composition of their HCN channels.


Assuntos
Encéfalo/efeitos dos fármacos , Cocaína/farmacologia , Expressão Gênica/efeitos dos fármacos , Canais Iônicos/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Canais Iônicos/genética , Locomoção/efeitos dos fármacos , Masculino , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...