Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biosci ; 37(3): 457-74, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22750983

RESUMO

Nucleic acid interaction with nanoscale objects like carbon nanotubes (CNTs) and dendrimers is of fundamental interest because of their potential application in CNT separation, gene therapy and antisense therapy. Combining nucleic acids with CNTs and dendrimers also opens the door towards controllable self-assembly to generate various supra-molecular and nano-structures with desired morphologies. The interaction between these nanoscale objects also serve as a model system for studying DNA compaction, which is a fundamental process in chromatin organization. By using fully atomistic simulations, here we report various aspects of the interactions and binding modes of DNA and small interfering RNA (siRNA) with CNTs, graphene and dendrimers. Our results give a microscopic picture and mechanism of the adsorption of single- and double-strand DNA (ssDNA and dsDNA) on CNT and graphene. The nucleic acid-CNT interaction is dominated by the dispersive van der Waals (vdW) interaction. In contrast, the complexation of DNA (both ssDNA and dsDNA) and siRNA with various generations of poly-amido-amine (PAMAM) dendrimers is governed by electrostatic interactions. Our results reveal that both the DNA and siRNA form stable complex with the PAMAM dendrimer at a physiological pH when the dendrimer is positively charged due to the protonation of the primary amines. The size and binding energy of the complex increase with increase in dendrimer generation. We also give a summary of the current status in these fields and discuss future prospects.


Assuntos
Dendrímeros/química , Simulação de Dinâmica Molecular , Nanotubos de Carbono/química , RNA Interferente Pequeno/química , Adsorção , Pareamento de Bases , DNA Forma A/química , DNA de Forma B/química , DNA de Cadeia Simples/química , Etanol/química , Grafite/química , Concentração de Íons de Hidrogênio , Solventes/química , Termodinâmica , Água/química
2.
J Chem Phys ; 136(6): 065106, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22360226

RESUMO

In an effort to design efficient platform for siRNA delivery, we combine all atom classical and quantum simulations to study the binding of small interfering RNA (siRNA) by pristine single wall carbon nanotube (SWCNT). Our results show that siRNA strongly binds to SWCNT surface via unzipping its base-pairs and the propensity of unzipping increases with the increase in the diameter of the SWCNTs. The unzipping and subsequent wrapping events are initiated and driven by van der Waals interactions between the aromatic rings of siRNA nucleobases and the SWCNT surface. However, molecular dynamics (MD) simulations of double strand DNA (dsDNA) of the same sequence show that the dsDNA undergoes much less unzipping and wrapping on the SWCNT in the simulation time scale of 70 ns. This interesting difference is due to smaller interaction energy of thymidine of dsDNA with the SWCNT compared to that of uridine of siRNA, as calculated by dispersion corrected density functional theory (DFT) methods. After the optimal binding of siRNA to SWCNT, the complex is very stable which serves as one of the major mechanisms of siRNA delivery for biomedical applications. Since siRNA has to undergo unwinding process with the effect of RNA-induced silencing complex, our proposed delivery mechanism by SWCNT possesses potential advantages in achieving RNA interference.


Assuntos
Nanotubos de Carbono/química , RNA Interferente Pequeno/química , Adsorção , Sítios de Ligação , DNA/química , Simulação de Dinâmica Molecular , Teoria Quântica , RNA Interferente Pequeno/administração & dosagem , Termodinâmica
3.
Biophys J ; 101(6): 1393-402, 2011 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-21943420

RESUMO

Crossover motifs are integral components for designing DNA-based nanostructures and nanomechanical devices due to their enhanced rigidity compared to the normal B-DNA. Although the structural rigidity of the double helix B-DNA has been investigated extensively using both experimental and theoretical tools, to date there is no quantitative information about structural rigidity and the mechanical strength of parallel crossover DNA motifs. We have used fully atomistic molecular dynamics simulations in explicit solvent to get the force-extension curve of parallel DNA nanostructures to characterize their mechanical rigidity. In the presence of monovalent Na(+) ions, we find that the stretch modulus (γ(1)) of the paranemic crossover and its topoisomer JX DNA structure is significantly higher (~30%) compared to normal B-DNA of the same sequence and length. However, this is in contrast to the original expectation that these motifs are almost twice as rigid compared to the double-stranded B-DNA. When the DNA motif is surrounded by a solvent with Mg(2+) counterions, we find an enhanced rigidity compared to Na(+) environment due to the electrostatic screening effects arising from the divalent nature of Mg(2+) ions. To our knowledge, this is the first direct determination of the mechanical strength of these crossover motifs, which can be useful for the design of suitable DNA for DNA-based nanostructures and nanomechanical devices with improved structural rigidity.


Assuntos
DNA/química , Nanoestruturas/química , Sequência de Bases , Fenômenos Biomecânicos , DNA/genética , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Termodinâmica
4.
J Nanosci Nanotechnol ; 9(9): 5425-30, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19928237

RESUMO

Boron Nitride Nanotubes (BNNTs) have alternating boron and nitrogen atoms in graphite like network and are strongly polar in nature due to a large charge on boron and nitrogen atoms. Hence electrostatic interactions are expected to play an important role in determining the elastic properties of BNNTs. In the absence of specific partial atomic charge information for boron and nitrogen, we have studied the elastic properties BNNTs varying the partial atomic charges on boron and nitrogen. We have computed Young modulus (Y) and Shear modulus (G) of BNNT as a function of the tube radius and number of walls using molecular mechanics calculation. Our calculation shows that Young modulus of BNNTs increases with increase in magnitude of the partial atomic charge on B and N and can be larger than the Young modulus of CNTs of same radius. This is in contrast to the earlier finding that CNTs has the largest tensile strength (PRL, 80, 4502, 1998). Shear modulus, on the other hand depends weakly on the magnitude of partial atomic charge and is less than the shear modulus of the CNT The values obtained for Young modulus and Shear modulus are in excellent agreement with the available experimental results.


Assuntos
Nanotubos de Carbono , Nanotubos , Módulo de Elasticidade , Resistência à Tração
5.
J Phys Condens Matter ; 21(3): 034113, 2009 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21817258

RESUMO

When pulled along the axis, double-strand DNA undergoes a large conformational change and elongates by roughly twice its initial contour length at a pulling force of about 70 pN. The transition to this highly overstretched form of DNA is very cooperative. Applying a force perpendicular to the DNA axis (unzipping), double-strand DNA can also be separated into two single-stranded DNA, this being a fundamental process in DNA replication. We study the DNA overstretching and unzipping transition using fully atomistic molecular dynamics (MD) simulations and argue that the conformational changes of double-strand DNA associated with either of the above mentioned processes can be viewed as force induced DNA melting. As the force at one end of the DNA is increased the DNA starts melting abruptly/smoothly above a critical force depending on the pulling direction. The critical force f(m), at which DNA melts completely decreases as the temperature of the system is increased. The melting force in the case of unzipping is smaller compared to the melting force when the DNA is pulled along the helical axis. In the case of melting through unzipping, the double-strand separation has jumps which correspond to the different energy minima arising due to sequence of different base pairs. The fraction of Watson-Crick base pair hydrogen bond breaking as a function of force does not show smooth and continuous behavior and consists of plateaus followed by sharp jumps.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...