Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Microbiol ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38922783

RESUMO

In every bacterium, nucleoid-associated proteins (NAPs) play crucial roles in chromosome organization, replication, repair, gene expression, and other DNA transactions. Their central role in controlling the chromatin dynamics and transcription has been well-appreciated in several well-studied organisms. Here, we review the diversity, distribution, structure, and function of NAPs from the genus Mycobacterium. We highlight the progress made in our understanding of the effects of these proteins on various processes and in responding to environmental stimuli and stress of mycobacteria in their free-living as well as during distinctive intracellular lifestyles. We project them as potential drug targets and discuss future studies to bridge the information gap with NAPs from well-studied systems.

2.
Mol Microbiol ; 121(6): 1164-1181, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38676355

RESUMO

Latent tuberculosis, caused by dormant Mycobacterium tuberculosis (Mtb), poses a threat to global health through the incubation of undiagnosed infections within the community. Dormant Mtb, which is phenotypically tolerant to antibiotics, accumulates triacylglycerol (TAG) utilizing fatty acids obtained from macrophage lipid droplets. TAG is vital to mycobacteria, serving as a cell envelope component and energy reservoir during latency. TAG synthesis occurs by sequential acylation of glycerol-3-phosphate, wherein the second acylation step is catalyzed by acylglycerol-3-phosphate acyltransferase (AGPAT), resulting in the production of phosphatidic acid (PA), a precursor for the synthesis of TAG and various phospholipids. Here, we have characterized a putative acyltransferase of Mtb encoded by Rv3816c. We found that Rv3816c has all four characteristic motifs of AGPAT, exists as a membrane-bound enzyme, and functions as 1-acylglycerol-3-phosphate acyltransferase. The enzyme could transfer the acyl group to acylglycerol-3-phosphate (LPA) from monounsaturated fatty acyl-coenzyme A of chain length 16 or 18 to produce PA. Complementation of Escherichia coli PlsC mutant in vivo by Rv3816c confirmed that it functions as AGPAT. Its active site mutants, H43A and D48A, were incapable of transferring the acyl group to LPA in vitro and were not able to rescue the growth defect of E. coli PlsC mutant in vivo. Identifying Rv3816c as AGPAT and comparing its properties with other AGPAT homologs is not only a step toward understanding the TAG biosynthesis in mycobacteria but has the potential to explore it as a drug target.


Assuntos
Mycobacterium tuberculosis , Triglicerídeos , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Triglicerídeos/biossíntese , Triglicerídeos/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Glicerol-3-Fosfato O-Aciltransferase/genética , Aciltransferases/metabolismo , Aciltransferases/genética , Acilação , Ácidos Graxos/metabolismo , Ácidos Graxos/biossíntese , Ácidos Fosfatídicos/metabolismo , Ácidos Fosfatídicos/biossíntese , Acil Coenzima A/metabolismo
3.
Appl Microbiol Biotechnol ; 107(20): 6263-6275, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37626186

RESUMO

Restriction-modification (R-M) systems form a large superfamily constituting bacterial innate immunity mechanism. The restriction endonucleases (REases) are very diverse in subunit structure, DNA recognition, co-factor requirement, and mechanism of action. Among the different catalytic motifs, HNH active sites containing REases are the second largest group distinguished by the presence of the ßßα-metal finger fold. KpnI is the first member of the HNH-family REases whose homologs are present in many bacteria of Enterobacteriaceae having varied degrees of sequence similarity between them. Considering that the homologs with a high similarity may have retained KpnI-like properties, while those with a low similarity could be different, we have characterized a distant KpnI homolog present in a pathogenic Klebsiella pneumoniae NTUH K2044. A comparison of the properties of KpnI and KpnK revealed that despite their similarity and the HNH motif, these two enzymes have different properties viz oligomerization, cleavage pattern, metal ion requirement, recognition sequence, and sequence specificity. Unlike KpnI, KpnK is a monomer in solution, nicks double-stranded DNA, recognizes degenerate sequence, and catalyses the degradation of DNA into smaller products after the initial cleavage at preferred sites. Due to several distinctive properties, it can be classified as a variant of the Type IIS enzyme having nicking endonuclease activity. KEY POINTS: • KpnK is a distant homolog of KpnI and belongs to the ßßα-metal finger superfamily. • Both KpnI and KpnK have widespread occurrence in K. pneumoniae strains. • KpnK is a Type IIS restriction endonuclease with a single-strand nicking property.

4.
Microbiology (Reading) ; 167(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34224344

RESUMO

Among the nucleoid-associated proteins (NAPs), HU is the most conserved in eubacteria, engaged in overall chromosome organization and regulation of gene expression. Unlike other bacteria, HU from Mycobacterium tuberculosis (MtHU), has a long carboxyl terminal domain enriched in basic amino acids, resembling eukaryotic histone N-terminal tails. As with histones, MtHU undergoes post-translational modifications and we have previously identified interacting kinases, methyltransferases, an acetyltransferase and a deacetylase. Here we show that Rv0802c interacts and succinylates MtHU. Although categorized as a succinyltransferase, we show that this GNAT superfamily member can catalyse both succinylation and acetylation of MtHU with comparable kinetic parameters. Like acetylation of MtHU, succinylation of MtHU caused reduced interaction of the NAP with DNA, determined by electrophoretic mobility shift assay and surface plasmon resonance. However, in vivo expression of Rv0802c did not significantly alter the nucleoid architecture. Although such succinylation of NAPs is rare, these modifications of the archetypal NAP may provide avenues to the organism to compensate for the underrepresentation of NAPs in its genome to control the dynamics of nucleoid architecture and cellular functions.


Assuntos
Acetiltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Nucléolo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mycobacterium tuberculosis/enzimologia , Acetilação , Acetiltransferases/genética , Proteínas de Bactérias/genética , Nucléolo Celular/genética , Proteínas de Ligação a DNA/genética , Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional , Succinatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...