Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(26): 24113-24124, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37426241

RESUMO

For achieving unified functionalities of rare-earth free materials, the development of innovative zinc oxide and ß-silicon carbide (ZnO@ß-SiC) composites by a solid-state reaction method is presented. The evolution of zinc silicate (Zn2SiO4) is evidenced by X-ray diffraction when annealed in air beyond 700 °C. Detailed X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy analyses reveal the involvement of silicon dioxide in forming Zn2SiO4. Transmission electron microscopy and the associated energy-dispersive X-ray spectroscopy elucidate the evolution of the zinc silicate phase at the ZnO/ß-SiC interface, though it can be averted by vacuum annealing. These results manifest the importance of air in oxidizing SiC before a chemical reaction with ZnO from 700 °C. Finally, ZnO@ß-SiC composites are found to be promising for methylene blue dye degradation under ultraviolet radiation, but the annealing above 700 °C is detrimental due to the evolution of a potential barrier in the presence of Zn2SiO4 at the ZnO/ß-SiC interface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...