Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 37(46): 13627-13636, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34752110

RESUMO

Liquid-infused slippery surfaces have replaced structural superhydrophobic surfaces in a plethora of emerging applications, hallmarked by their favorable self-healing and liquid-repelling characteristics. Their ease of fabrication on different types of materials and increasing demand in various industrial applications have triggered research interests targeted toward developing an environmental-friendly, flexible, and frugal substrate as the underlying structural and functional backbone. Although many expensive polymers such as polytetrafluoroethylene have so far been used for their fabrication, these are constrained by their compromised flexibility and non-ecofriendliness due to the use of fluorine. Here, we explore the development and deployment of a biodegradable, recyclable, flexible, and an economically viable material in the form of a paper matrix for fabricating liquid-infused slippery interfaces for prolonged usage. We show by controlled experiments that a simple silanization followed by an oil infusion protocol imparts an inherent slipperiness (low contact angle hysteresis and low tilting angle for sliding) to the droplet motion on the paper substrate and provides favorable anti-icing characteristics, albeit keeping the paper microstructures unaltered. This ensures concomitant hydrophobicity, water adhesion, and capillarity for low surface tension fluids, such as mustard oil, with an implicit role played by the paper pore size distribution toward retaining a stable layer of the infused oil. With demonstrated supreme anti-icing characteristics, these results open up new possibilities of realizing high-throughput paper-based substrates for a wide variety of applications ranging from biomedical unit operations to droplet-based digital microfluidics.

2.
Phys Rev E ; 100(3-1): 033101, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31640051

RESUMO

Deformation and breakup of droplets in confined shear flows have been attracting increasing attention from the research community over the past few years, as attributable to their implications in microfluidics and emulsion processing. Reported results in this regard have demonstrated that the primary effect of confinement happens to be the inception of complex oscillating transients, monotonic variation of droplet deformation, and droplet stabilization against breakup, as attributable to wall-induced distortion of the flow field. In sharp contrast to these reported findings, here, we show that a nonintuitive nonmonotonic droplet deformation may occur in a confined shear flow, under the influence of an external electric field. In addition, we demonstrate that the orientation angle of a droplet may either increase or decrease with the domain confinement under the influence of an electric field, whereas the same trivially decreases with the increase in degree of confinement in the absence of any electrical effects. Unlike the typical oscillatory transients observed in microconfined shear flows, we further bring out the possibility of an electrohydrodynamically induced dampening effect in the oscillation characteristics, as governed by a specific regime of the relevant dimensionless electrical parameters. Our results reveal that instead of arresting droplet deformation, the unique hydrodynamics of microconfined shear flow may augment the tendency of droplet breakup, and is likely to alter the droplet breakup mode from midpoint pinching to edge pinching at high electric field strength. These results may bear far reaching implications in a wide variety of applications ranging from the processing of emulsions to droplet based microfluidic technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...