Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 986740, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275528

RESUMO

Implementation of plant extracts that are rich in phytochemicals and have the allelopathic potential for weed management could help reduce the use of chemical herbicides. The present study investigated the herbicidal potential of walnut (Juglans regia L.) leaf extract (WLE) against two weeds, Amaranthus retroflexus L. and Chenopodium album L., by testing in vitro their seed germination and seedling growth, and then evaluated in vivo the oxidative stress of potted plants. The effects of the walnut leaf extract were also tested on maize (Zea mays L.) to eliminate possible negative impacts on a cultivated plant. Total phenolic acids and total flavonoid content in the extract were determined in prior bioassays, followed by separation and analysis of flavonoids and phenolic acids by high-performance liquid chromatography (HPLC). Phytochemical analysis revealed that the obtained extract was notably rich in phenolic compounds, while HPLC analysis confirmed the presence of (+)-catechin, luteolin, myricetin, rutin, (-)-epicatechin, genistin, protocatechuic acid, and caffeic acid as major extract components. The results obtained in bioassays revealed a significant negative impact of the walnut leaf extract on germination and seedling growth of the tested weeds, as well as significant oxidative stress in weeds grown in pots. Although it affected the maize seedling growth in vitro similar to the tested weeds, maize germination was less sensitive to treatment, and the extract did not have a significant negative impact in terms of oxidative stress in maize plants grown in pots. The findings show that walnut leaf extract may have a promising role in replacing chemical herbicides in maize.

2.
J Environ Sci Health B ; 57(8): 636-643, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35833259

RESUMO

After an outbreak of cobweb disease of cultivated button mushroom in Serbia in 2003, the isolated fungal pathogen was initially identified as Cladobotryum dendroides (teleomorph Hypomyces rosellus) based on morpho-physiological traits. Molecular analysis indicated re-classification of two strains (isolated in 2004 and 2007) as Cladobotryum mycophilum (teleomorph Hypomyces odoratus). However, subsequent analysis of further five strains (isolated over the period 2003-2010) within the frames of the present study, also confirmed their identification as the exclusive cobweb causal agent C. mycophilum. After artificial inoculation, the symptoms observed on harvested and growing mushrooms were consistent with the appearance of cobweb disease. Pathogen sensitivity to fungicides was estimated by probit analyses. Fungicide susceptibility tests showed that C. mycophilum strains were highly sensitive both to prochloraz (ED50<0.087 µg mL-1) and the newly introduced metrafenone (ED50<0.15 µg mL-1). Furthermore, the growth of all examined strains of C. mycophilum was significantly inhibited by the indigenous actinobacterial strain Streptomyces flavovirens A06. A dual culture assay showed after 72 h that the percentage of radial growth inhibition of the pathogen ranged from 22.38 to 55.73%. Our findings suggest that the antagonistic S. flavovirens A06 might be a potential candidate for controlling the cobweb disease of cultivated button mushroom.


Assuntos
Actinobacteria , Agaricus , Fungicidas Industriais , Streptomyces , Benzofenonas , Fungicidas Industriais/química , Fungicidas Industriais/farmacologia , Hypocreales , Imidazóis , Streptomyces/genética
3.
J Environ Sci Health B ; 56(1): 16-22, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33048609

RESUMO

The present study investigated integrated effects of two allelopathic plant water extracts (WE) (Ambrosia artemisiifolia [AMBEL] and Xanthium strumarium [XANST]) and a herbicide (mesotrione) on morphological (height and fresh weight of plants) and physiological (pigments content) parameters of Abutilon theophrasti and Chenopodium album. Also, the study aimed to identify the main components of AMBEL and XANST WE and to evaluate their potential allelopathic effects. Of the 18 investigated compounds, 13 were detected in both tested WE, and p-coumaric acid was the leading component in AMBEL, while quinic acid was the predominant component of XANST. The WE of both weed species and their mixtures with the herbicide exhibited more powerful allelopathic effects on fresh weight and content of pigments than on the height of A. theophrasti and C. album. The results showed that all measured parameters of both weeds were inhibited in treatments with mesotrione and its mix with AMBEL and XANST WE. The data revealed a highly significant difference in effects (P < 0.05) between control weeds and those treated with AMBEL WE and mesotrione, where the inhibition of fresh weight was over 90%, while the inhibition of pigments content exceeded 80%, and plant height was inhibited by over 70%.


Assuntos
Alelopatia , Herbicidas/farmacologia , Extratos Vegetais/farmacologia , Controle de Plantas Daninhas/métodos , Ambrosia/química , Chenopodium album/efeitos dos fármacos , Cicloexanonas/farmacologia , Malvaceae/efeitos dos fármacos , Plantas Daninhas/efeitos dos fármacos , Água/química , Xanthium/química
4.
Plants (Basel) ; 9(10)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003291

RESUMO

Peppermint (Mentha piperita L.) and chamomile (Chamomilla recutita (L.) Rausch.) are aromatic plants with considerable economic value. These plants and their essential oils are used in medicine, cosmetics, and the food industry. One of the main limiting factors in peppermint and chamomile commercial cultivation is weed competition since weeds are able to decrease both oil amount and biomass yield. The purpose of the present study was to determine the effect of parasitism by field dodder (Cuscuta campestris Yunck.) on peppermint and chamomile dry weight and their essential oil yield and composition. Essential oils from both noninfested and infested peppermint and chamomile plants were obtained by hydrodistillation and characterized chemically by gas chromatography (GC) coupled with mass spectrometry (MS). The amount of dry matter accumulated by peppermint and chamomile plants infested by field dodder was lower (25% and 63%, respectively) compared to noninfested plants. Essential oil yield increased for peppermint (3.87% (v/w) and 3.63% (v/w)), but decreased for chamomile (0.2% (v/w) and 0.5% (v/w)) both from infested and noninfested plants, respectively. The oil composition profile significantly differed in terms of content. In peppermint plants, field dodder infestation increased menthone content by 23%, and decreased the content of both menthol by 11% and pulegone by 67%. Furthermore, δ-cadinene was detected only in oil extracted from infested peppermint plants. Compared to peppermint, chamomile plants were significantly more affected by field dodder in terms of essential oil yield, as well as oil composition and plant dry weight. In chamomile plants, (E)-dendrolasin was detected in the oil of noninfested plants, and 1,4-dimethyl-7-(1-methylethyl)-azulen-2-ol was detected only in the oil of infested plants.

5.
Chem Biodivers ; 17(1): e1900508, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31692228

RESUMO

This study aimed to identify the main components of an essential oil produced from leaves of Ambrosia trifida and to evaluate its potential allelopathic effect on seed germination and seedling growth of lettuce, watermelon, cucumber and tomato. The essential oil was obtained by hydrodistillation and characterized chemically by gas chromatography (GC) coupled with both mass spectrometry (MS) and flame ionization detector (FID). Total 69 compounds were identified, with limonene (20.7 %), bornyl acetate (15.0 %), borneol (14.7 %) and germacrene D (11.6 %) as the major components. The working solutions of the essential oil emulsified with Tween 20 and dissolved in distilled water were prepared at four concentration levels (0.01, 0.1, 0.5 % and 1 %, v/v). The results obtained showed that increase in essential oil concentration leads to decrease in seed germination, as well as shoot and radical length of lettuce, watermelon, cucumber and tomato. The obtained data revealed a highly significant effect (p<0.05) between control and 1 % and 0.5 % oil concentrations in all treatments. The essential oil of A. trifida exhibited more powerful phytotoxic effects on lettuce, watermelon and tomato than on cucumber regarding germination and early seedling growth.


Assuntos
Ambrosia/química , Citrullus/efeitos dos fármacos , Cucumis sativus/efeitos dos fármacos , Lactuca/efeitos dos fármacos , Óleos Voláteis/toxicidade , Folhas de Planta/química , Solanum lycopersicum/efeitos dos fármacos , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação
6.
J Environ Sci Health B ; 54(4): 247-251, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30628556

RESUMO

The evaluation of the inhibition effect exerted by the essential oils of basil (Ocimum basilicum), sage (Salvia officinalis), thyme (Thymus vulgaris), lemon balm (Melissa officinalis) and goldenrod (Solidago virgaurea) on seeds germination and early seedling growth of velvetleaf (Abutilon theophrasti Medik.) weed was examined in a laboratory bioassay. The essential oils were obtained by hydrodistillation and characterized chemically by gas chromatography coupled with both mass spectrometry and flame ionization detector. The working solutions of essential oil emulsified with Tween 20 and dissolved in distilled water were prepared at three concentration levels (0.01%, 0.1% and 1%, vol/vol). The results obtained showed that increase of essential oil concentration leads to decrease of seed germination, shoot and radical length of velvetleaf. The obtained data revealed a highly significant effect (P < 0.05) between control and 1% and 0.1% oil concentrations in all treatments. The essential oils of basil, thyme and lemon balm exhibited more powerful bio-herbicidal effect compared to sage and goldenrod essential oils on the germination and early seedling growth of velvetleaf weed.


Assuntos
Germinação/efeitos dos fármacos , Herbicidas/farmacologia , Malvaceae/efeitos dos fármacos , Óleos Voláteis/farmacologia , Plântula/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas , Herbicidas/química , Malvaceae/crescimento & desenvolvimento , Melissa/química , Ocimum basilicum/química , Óleos Voláteis/química , Polissorbatos/química , Salvia/química , Plântula/crescimento & desenvolvimento , Solidago/química , Thymus (Planta)/química
7.
J Environ Sci Health B ; 53(10): 677-684, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29775426

RESUMO

Thirty-five actinobacterial isolates, obtained from button mushroom (Agaricus bisporus) substrates (i.e., compost in different phases of composting, black peat or casing layer) in Serbia in 2014-2016 were tested in vitro against the causal agents of green mold in cultivated mushroom. Out of six most promising isolates, A06 induced 42.4% in vitro growth inhibition of Trichoderma harzianum T54, and 27.6% inhibition of T. aggressivum f. europaeum T77. The novel strain A06 was identified as Streptomyces flavovirens based on macroscopic and cultural characteristics and 16S rDNA sequence and used in mushroom growing room experiments. Actinobacteria had no negative influence on mycelial growth of the cultivated mushroom in compost in situ. Isolate S. flavovirens A06 enhanced mushroom yield significantly, up to 31.5%. The A06 isolate was more efficient in enhancing yield after inoculation with the compost mold T. aggressivum (26.1%), compared to casing mold T. harzianum (8%). Considering disease incidence, actinobacteria significantly prevented green mold in compost caused by T. aggressivum (6.8%). However, fungicide prochloraz-Mn had a more significant role in reducing symptoms of casing mold, T. harzianum, in comparison with actinobacteria (24.2 and 11.8%, respectively). No significant differences between efficacies of S. flavovirens A06 and the fungicide prochloraz-Mn against T. aggressivum were revealed. These results imply that S. flavovirens A06 can be used to increase mushroom yield and contribute to disease control against the aggressive compost green mold disease caused by Trichoderma aggressivum.


Assuntos
Agaricus/efeitos dos fármacos , Agaricus/crescimento & desenvolvimento , Fungicidas Industriais/química , Fungicidas Industriais/farmacologia , Extratos Vegetais/farmacologia , Streptomyces/química , Trichoderma/efeitos dos fármacos , Agaricus/química , Compostagem , Extratos Vegetais/química , Sérvia , Microbiologia do Solo
8.
J AOAC Int ; 95(5): 1331-7, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23175962

RESUMO

This paper describes development and validation of a multiresidue method for the determination of five pesticides (terbufos, prochloraz, chloridazon, pendimethalin, and fluorochloridone) belonging to different pesticide groups in soil samples by GC/MS, followed by its application in the analysis of some agricultural soil samples. The method is based on a headspace solid-phase microextraction method. Microextraction conditions, namely temperature, extraction time, and NaCI content, were tested and optimized using a 100 microm polydimethylsiloxane fiber. Three extraction solvents [methanol, methanol-acetone (1 + 1, v/v), and methanol-acetone-hexane (2 + 2 + 1, v/v/v)] and the optimum number of extraction steps within the sample preparation stage were optimized for the extraction procedure. LOD values for all the studied compounds were less than 12 microg/kg. Recovery values for multiple analyses of soil samples fortified at 30 microg/kg of each pesticide were higher than 64%. The method was proven to be repeatable, with RSD lower than 15%.


Assuntos
Praguicidas/química , Poluentes do Solo/química , Solo/química , Microextração em Fase Sólida/métodos , Técnicas de Química Analítica , Reprodutibilidade dos Testes
9.
J Environ Sci Health B ; 45(7): 626-32, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20803366

RESUMO

A headspace solid phase microextraction method (HS-SPME) for simultaneous determination of five pesticides belonging to triazine and organophosphorus pesticide groups in soil samples was developed. Microextraction conditions, such as temperature, extraction time and sodium chloride (NaCl) content were investigated and optimized using 100 microm polydimethyl-siloxane (PDMS) fiber. Detection and quantification were done by gas chromatography-mass spectrometry (GC-MS). Relative standard deviation (RSD) and recovery values for multiple analysis of soil samples fortified at 30 microg kg(- 1) of each pesticide were below 13 % and higher than 70 %, respectively. Limits of detection (LOD) for all the compounds studied were less than 3.2 microg kg(- 1). The proposed method was applied in the analysis of some agricultural soil samples.


Assuntos
Compostos Organofosforados/isolamento & purificação , Resíduos de Praguicidas/isolamento & purificação , Poluentes do Solo/isolamento & purificação , Microextração em Fase Sólida/métodos , Triazinas/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas , Compostos Organofosforados/análise , Resíduos de Praguicidas/análise , Poluentes do Solo/análise , Triazinas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...