Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 325(2): L135-L142, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37310768

RESUMO

In acute lung injury, the lung endothelial barrier is compromised. Loss of endothelial barrier integrity occurs in association with decreased levels of the tight junction protein claudin-5. Restoration of their levels by gene transfection may improve the vascular barrier, but how to limit transfection solely to regions of the lung that are injured is unknown. We hypothesized that thoracic ultrasound in combination with intravenous microbubbles (USMBs) could be used to achieve regional gene transfection in injured lung regions and improve endothelial barrier function. Since air blocks ultrasound energy, insonation of the lung is only achieved in areas of lung injury (edema and atelectasis); healthy lung is spared. Cavitation of the microbubbles achieves local tissue transfection. Here we demonstrate successful USMB-mediated gene transfection in the injured lungs of mice. After thoracic insonation, transfection was confined to the lung and only occurred in the setting of injured (but not healthy) lung. In a mouse model of acute lung injury, we observed downregulation of endogenous claudin-5 and an acute improvement in lung vascular leakage and in oxygenation after claudin-5 overexpression by transfection. The improvement occurred without any impairment of the immune response as measured by pathogen clearance, alveolar cytokines, and lung histology. In conclusion, USMB-mediated transfection targets injured lung regions and is a novel approach to the treatment of lung injury.NEW & NOTEWORTHY Acute respiratory distress syndrome is characterized by spatial heterogeneity, with severely injured lung regions adjacent to relatively normal areas. This makes targeting treatment to the injured regions difficult. Here we use thoracic ultrasound and intravenous microbubbles (USMBs) to direct gene transfection specifically to injured lung regions. Transfection of the tight junction protein claudin-5 improved oxygenation and decreased vascular leakage without impairing innate immunity. These findings suggest that USMB is a novel treatment for ARDS.


Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Animais , Camundongos , Lesão Pulmonar Aguda/patologia , Claudina-5/genética , Claudina-5/metabolismo , Imunidade Inata , Pulmão/metabolismo , Síndrome do Desconforto Respiratório/patologia , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/metabolismo , Transfecção , Ultrassonografia de Intervenção
2.
Pharmaceutics ; 14(11)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36432707

RESUMO

Targeted drug and gene delivery using ultrasound and microbubbles (USMB) has the potential to treat several diseases. In vitro investigation of USMB-mediated delivery is of prime importance prior to in vivo studies because it is cost-efficient and allows for the rapid optimization of experimental parameters. Most in vitro USMB studies are carried out with non-clinical, research-grade ultrasound systems, which are not approved for clinical use and are difficult to replicate by other labs. A standardized, low-cost, and easy-to-use in vitro experimental setup using a clinical ultrasound system would facilitate the eventual translation of the technology to the bedside. In this paper, we report a modular 3D-printed experimental setup using a clinical ultrasound transducer that can be used to study USMB-mediated drug delivery. We demonstrate its utility for optimizing various cargo delivery parameters in the HEK293 cell line, as well as for the CMT167 lung carcinoma cell line, using dextran as a model drug. We found that the proportion of dextran-positive cells increases with increasing mechanical index and ultrasound treatment time and decreases with increasing pulse interval (PI). We also observed that dextran delivery is most efficient for a narrow range of microbubble concentrations.

3.
Biomedicines ; 9(7)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34356867

RESUMO

Acute respiratory distress syndrome (ARDS) is characterized by increased permeability of the alveolar-capillary membrane, a thin barrier composed of adjacent monolayers of alveolar epithelial and lung microvascular endothelial cells. This results in pulmonary edema and severe hypoxemia and is a common cause of death after both viral (e.g., SARS-CoV-2) and bacterial pneumonia. The involvement of the lung in ARDS is notoriously heterogeneous, with consolidated and edematous lung abutting aerated, less injured regions. This makes treatment difficult, as most therapeutic approaches preferentially affect the normal lung regions or are distributed indiscriminately to other organs. In this review, we describe the use of thoracic ultrasound and microbubbles (USMB) to deliver therapeutic cargo (drugs, genes) preferentially to severely injured areas of the lung and in particular to the lung endothelium. While USMB has been explored in other organs, it has been under-appreciated in the treatment of lung injury since ultrasound energy is scattered by air. However, this limitation can be harnessed to direct therapy specifically to severely injured lungs. We explore the cellular mechanisms governing USMB and describe various permutations of cargo administration. Lastly, we discuss both the challenges and potential opportunities presented by USMB in the lung as a tool for both therapy and research.

4.
Arterioscler Thromb Vasc Biol ; 41(1): 200-216, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33054399

RESUMO

OBJECTIVE: LDL (low-density lipoprotein) transcytosis across the endothelium is performed by the SR-BI (scavenger receptor class B type 1) receptor and contributes to atherosclerosis. HMGB1 (high mobility group box 1) is a structural protein in the nucleus that is released by cells during inflammation; extracellular HMGB1 has been implicated in advanced disease. Whether intracellular HMGB1 regulates LDL transcytosis through its nuclear functions is unknown. Approach and Results: HMGB1 was depleted by siRNA in human coronary artery endothelial cells, and transcytosis of LDL was measured by total internal reflection fluorescence microscopy. Knockdown of HMGB1 attenuated LDL transcytosis without affecting albumin transcytosis. Loss of HMGB1 resulted in reduction in SR-BI levels and depletion of SREBP2 (sterol regulatory element-binding protein 2)-a transcription factor upstream of SR-BI. The effect of HMGB1 depletion on LDL transcytosis required SR-BI and SREBP2. Overexpression of HMGB1 caused an increase in LDL transcytosis that was unaffected by inhibition of extracellular HMGB1 or depletion of RAGE (receptor for advanced glycation endproducts)-a cell surface receptor for HMGB1. The effect of HMGB1 overexpression on LDL transcytosis was prevented by knockdown of SREBP2. Loss of HMGB1 caused a reduction in the half-life of SREBP2; incubation with LDL caused a significant increase in nuclear localization of HMGB1 that was dependent on SR-BI. Animals lacking endothelial HMGB1 exhibited less acute accumulation of LDL in the aorta 30 minutes after injection and when fed a high-fat diet developed fewer fatty streaks and less atherosclerosis. CONCLUSIONS: Endothelial HMGB1 regulates LDL transcytosis by prolonging the half-life of SREBP2, enhancing SR-BI expression. Translocation of HMGB1 to the nucleus in response to LDL requires SR-BI.


Assuntos
Aterosclerose/metabolismo , Células Endoteliais/metabolismo , Proteína HMGB1/metabolismo , Receptores de LDL/metabolismo , Receptores Depuradores Classe B/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Transcitose , Transporte Ativo do Núcleo Celular , Animais , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Células Cultivadas , Modelos Animais de Doenças , Feminino , Proteína HMGB1/deficiência , Proteína HMGB1/genética , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estabilidade Proteica , Receptores de LDL/genética , Receptores Depuradores Classe B/genética , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 2/genética
5.
Endocrinology ; 161(4)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32103251

RESUMO

To act on tissues, circulating insulin must perfuse the relevant organ and then leave the bloodstream by crossing the endothelium-a process known as insulin delivery. It has been postulated that the continuous endothelium is a rate-limiting barrier to insulin delivery but existing data are contradictory. This conflict is in part due to the limitations of current models, including the inability to maintain a constant blood pressure in animals and the absence of shear stress in cultured cells. We developed a murine cardiac ex vivo perfusion model that delivers insulin to the heart in situ at a constant flow. We hypothesized that if the endothelial barrier were rate-limiting to insulin delivery, increasing endothelial permeability would accelerate insulin action. The kinetics of myocardial insulin action were determined in the presence or absence of agents that increased endothelial permeability. Permeability was measured using Evans Blue, which binds with high affinity to albumin. During our experiments, the myocardium remained sensitive to insulin and the vasculature retained barrier integrity. Perfusion with insulin induced Akt phosphorylation in myocytes but not in the endothelium. Infusion of platelet-activating factor or vascular endothelial growth factor significantly increased permeability to albumin without altering insulin action. Amiloride, an inhibitor of fluid-phase uptake, also did not alter insulin action. These data suggest that the endothelial barrier is not rate limiting to insulin's action in the heart; its passage out of the coronary circulation is consistent with diffusion or convection. Modulation of transendothelial transport to overcome insulin resistance is unlikely to be a viable therapeutic strategy.


Assuntos
Endotélio Vascular/efeitos dos fármacos , Coração/efeitos dos fármacos , Insulina/farmacologia , Miocárdio/metabolismo , Animais , Permeabilidade Capilar/efeitos dos fármacos , Linhagem Celular , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Humanos , Masculino , Camundongos , Fosforilação/efeitos dos fármacos , Fator de Ativação de Plaquetas/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...