Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; : 168643, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38848865

RESUMO

Autophagy facilitates the degradation of cellular content via the lysosome and is involved in cellular homeostasis and stress response pathways. As such, malfunction of autophagy is linked to a variety of diseases ranging from organ-specific illnesses like cardiomyopathy to systemic illnesses such as cancer or metabolic syndromes. Given the variety of autophagic functions within a cell and tissue, regulation of autophagy is complex and contains numerous positive and negative feedback loops. While our knowledge of mechanisms for cargo selectivity has significantly improved over the last decade, our understanding of signaling routes activating individual autophagy pathways remains rather sparse. In this resource study, we report on a well-characterized chemical library containing 77 GPCR-targeting ligands that was used to systematically analyze LC3B-based autophagy as well as ER-phagy flux upon compound treatment. Upon others, compounds TC-G 1004, BAY 60-6583, PSNCBAM-1, TC-G 1008, LPA2 Antagonist 1, ML154, JTC-801 and ML-290 targeting adenosine receptor A2a (ADORA2A), adenosine receptor A2b (ADORA2B), cannabinoid receptor 1 (CNR1), G-protein coupled receptor 39 (GPR39), lysophosphatidic acid receptor 2 (LPAR2), neuropeptide S receptor 1 (NPSR1), opioid related nociceptin receptor 1 (OPRL1), and relaxin receptor 1 (RXFP1), respectively, were hit compounds for general autophagy flux. From these compounds, only JTC-801 markly increased ER-phagy flux. In addition, the global impact of these selected hit compounds were analyzed by TMT-based mass spectrometry and demonstrated the differential impact of targeting GPCRs on autophagy-associated proteins. This chemical screening exercise indicates to a significant cross-talk between GPCR signaling and regulation of autophagy pathways.

2.
Nat Commun ; 14(1): 8364, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102139

RESUMO

Selective autophagy of the endoplasmic reticulum (ER), known as ER-phagy, is an important regulator of ER remodeling and essential to maintain cellular homeostasis during environmental changes. We recently showed that members of the FAM134 family play a critical role during stress-induced ER-phagy. However, the mechanisms on how they are activated remain largely unknown. In this study, we analyze phosphorylation of FAM134 as a trigger of FAM134-driven ER-phagy upon mTOR (mechanistic target of rapamycin) inhibition. An unbiased screen of kinase inhibitors reveals CK2 to be essential for FAM134B- and FAM134C-driven ER-phagy after mTOR inhibition. Furthermore, we provide evidence that ER-phagy receptors are regulated by ubiquitination events and that treatment with E1 inhibitor suppresses Torin1-induced ER-phagy flux. Using super-resolution microscopy, we show that CK2 activity is essential for the formation of high-density FAM134B and FAM134C clusters. In addition, dense clustering of FAM134B and FAM134C requires phosphorylation-dependent ubiquitination of FAM134B and FAM134C. Treatment with the CK2 inhibitor SGC-CK2-1 or mutation of FAM134B and FAM134C phosphosites prevents ubiquitination of FAM134 proteins, formation of high-density clusters, as well as Torin1-induced ER-phagy flux. Therefore, we propose that CK2-dependent phosphorylation of ER-phagy receptors precedes ubiquitin-dependent activation of ER-phagy flux.


Assuntos
Autofagia , Proteínas de Membrana , Fosforilação , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Autofagia/fisiologia , Retículo Endoplasmático/metabolismo , Proteínas de Transporte/metabolismo , Estresse do Retículo Endoplasmático , Serina-Treonina Quinases TOR/metabolismo , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...