Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 43(1): 93-106, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067064

RESUMO

Bromelain is a mixture of proteolytic enzymes derived from pineapple (Ananas comosus) fruit and stem possessing several beneficial properties, particularly anti-inflammatory activity. However, the molecular mechanisms underlying the anti-inflammatory effects of bromelain are unclear. This study investigated the anti-inflammatory effects and inhibitory molecular mechanisms of crude and purified rhizome bromelains on lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophage cells. RAW264.7 cells were pre-treated with various concentrations of crude bromelain (CB) or purified bromelain (PB), and then treated with LPS. The production levels of pro-inflammatory cytokines and mediators, including nitric oxide (NO), interleukin (IL)-6, and tumor necrosis factor (TNF)-α were determined by Griess and ELISA assays. The expressions of inducible nitric oxide synthetase (iNOS), cyclooxygenase (COX)-2, nuclear factor kappa B (NF-κB), and mitogen-activated protein kinases (MAPKs)-signaling pathway-related proteins were examined by western blot analysis. The pre-treatment of bromelain dose-dependently reduced LPS-induced pro-inflammatory cytokines and mediators, which correlated with downregulation of iNOS and COX-2 expressions. The inhibitory potency of PB was stronger than that of CB. PB also suppressed phosphorylated NF-κB (p65), nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha, extracellular signal-regulated kinases, c-Jun amino-terminal kinases, and p38 proteins in LPS-treated cells. PB then exhibited potent anti-inflammatory effects on LPS-induced inflammatory responses in RAW264.7 cells by inhibiting the NF-κB and MAPKs-signaling pathways.


Assuntos
Ananas/química , Bromelaínas/farmacologia , Lipopolissacarídeos/toxicidade , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , NF-kappa B/antagonistas & inibidores , Rizoma/química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Bromelaínas/química , Regulação para Baixo , Macrófagos/metabolismo , Camundongos , Células RAW 264.7 , Transdução de Sinais
2.
Biosci Rep ; 38(5)2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30068696

RESUMO

Lentiviral vectors have emerged as the most efficient system to stably transfer and insert genes into cells. By adding a tetracycline (Tet)-inducible promoter, transgene expression delivered by a lentiviral vector can be expressed whenever needed and halted when necessary. Here we have constructed a doxycycline (Dox)-inducible lentiviral vector which efficiently introduces a designed zinc finger protein, 2-long terminal repeat zinc-finger protein (2LTRZFP), into hematopoietic cell lines and evaluated its expression in pluripotent stem cells. As a result this lentiviral inducible system can regulate 2LTRZFP expression in the SupT1 T-cell line and in pluripotent stem cells. Using this vector, no basal expression was detected in the T-cell line and its induction was achieved with low Dox concentrations. Remarkably, the intracellular regulatory expression of 2LTRZFP significantly inhibited HIV-1 integration and replication in HIV-inoculated SupT1 cells. This approach could provide a potential tool for gene therapy applications, which efficiently control and reduce the side effect of therapeutic genes expression.


Assuntos
Terapia Genética/métodos , Vetores Genéticos , Repetição Terminal Longa de HIV/genética , HIV-1/genética , Integração Viral/fisiologia , Relação Dose-Resposta a Droga , Doxiciclina/administração & dosagem , Doxiciclina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Infecções por HIV/genética , Repetição Terminal Longa de HIV/efeitos dos fármacos , HIV-1/patogenicidade , Humanos , Lentivirus/genética , Células-Tronco Pluripotentes/virologia , Tetraciclina/farmacologia , Transgenes , Integração Viral/efeitos dos fármacos , Integração Viral/genética , Dedos de Zinco
3.
Protein Expr Purif ; 150: 17-25, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29733907

RESUMO

The requirement for reliable bicistronic or multicistronic vectors in gene delivery systems is at the forefront of bio/biomedical technology. A method that provides an efficient co-expression of multiple heterologous proteins would be valuable for many applications, especially in medical science for treating various types of disease. In this study, we designed and constructed a bicistronic expression vector using a self-cleaving 2A peptide derived from a virus of the insect Thosea asigna (T2A). This exhibited the most efficient cleavage of the 2A sequence. Two versions of the T2A-based vector were constructed by switching the DNA sequences encoding the proteins of interest, the N-myristoylated protein and the nuclear-homing protein, upstream and downstream of the 2A linker, respectively. Our results showed that similar levels of mRNA expression were found and 100% of cleavage efficiency of T2A was observed. Nevertheless, we also reported the cleared evidence that the N-myristoylated protein cannot be placed downstream of the 2A sequence. Since the protein product fails to translocate to the plasma membrane due to altered myristoylation process, the gene position of the T2A-based vector is meaningful for the subcellular localization of the N-myristoylated protein. Therefore, the observation was marked as a precaution for using the 2A peptide. To adopt the 2A peptide technology for generating the bicistronic or multicistronic expression, the vector design should be carefully considered for the transgene position, signal sequences, and post-translational modifications of each individual protein.


Assuntos
Membrana Celular/metabolismo , Lipoilação , Biossíntese de Proteínas , Proteínas Recombinantes de Fusão , Proteínas Virais , Membrana Celular/genética , Células HEK293 , Humanos , Transporte Proteico , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Virais/biossíntese , Proteínas Virais/genética
4.
Asian Pac J Allergy Immunol ; 36(2): 126-135, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-28802032

RESUMO

BACKGROUND: AnkGAG1D4 is an artificial ankyrin repeat protein which recognizes the capsid protein (CA) of the human immunodeficiency virus type 1 (HIV-1) and exhibits the intracellular antiviral activity on the viral assembly process. Improving the binding affinity of AnkGAG1D4 would potentially enhance the AnkGAG1D4-mediated antiviral activity. OBJECTIVE: To augment the affinity of AnkGAG1D4 scaffold towards its CA target, through computational predictions and experimental designs. METHOD: Three dimensional structure of the binary complex formed by AnkGAG1D4 docked to the CA was used as a model for van der Waals (vdW) binding energy calculation. The results generated a simple guideline to select the amino acids for modifications. Following the predictions, modified AnkGAG1D4 proteins were produced and further evaluated for their CA-binding activity, using ELISA-modified method and bio-layer interferometry (BLI). RESULTS: Tyrosine at position 56 (Y56) in AnkGAG1D4 was experimentally identified as the most critical residue for CA binding. Rational substitutions of this residue diminished the binding affinity. However, vdW calculation preconized to substitute serine for tyrosine at position 45. Remarkably, the affinity for the viral CA was significantly enhanced in AnkGAG1D4-S45Y mutant, with no alteration of the target specificity. CONCLUSIONS: The S-to-Y mutation at position 45, based on the prediction of interacting amino acids and on vdW binding energy calculation, resulted in a significant enhancement of the affinity of AnkGAG1D4 ankyrin for its CA target. AnkGAG1D4-S45Y mutant represented the starting point for further construction of variants with even higher affinity towards the viral CA, and higher therapeutic potential in the future.


Assuntos
Antivirais/química , Antivirais/farmacologia , HIV-1/efeitos dos fármacos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/farmacologia , Sequência de Aminoácidos , Aminoácidos , Anquirinas/química , Anquirinas/metabolismo , Anquirinas/farmacologia , Antivirais/metabolismo , Proteínas do Capsídeo/metabolismo , Humanos , Ligação Proteica , Proteínas Recombinantes de Fusão/metabolismo , Relação Estrutura-Atividade
5.
Mol Ther Nucleic Acids ; 4: e249, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26305555

RESUMO

Designed molecular scaffolds have been proposed as alternative therapeutic agents against HIV-1. The ankyrin repeat protein (Ank(GAG)1D4) and the zinc finger protein (2LTRZFP) have recently been characterized as intracellular antivirals, but these molecules, used individually, do not completely block HIV-1 replication and propagation. The capsid-binder Ank(GAG)1D4, which inhibits HIV-1 assembly, does not prevent the genome integration of newly incoming viruses. 2LTRZFP, designed to target the 2-LTR-circle junction of HIV-1 cDNA and block HIV-1 integration, would have no antiviral effect on HIV-1-infected cells. However, simultaneous expression of these two molecules should combine the advantage of preventive and curative treatments. To test this hypothesis, the genes encoding the N-myristoylated Myr(+)Ank(GAG)1D4 protein and the 2LTRZFP were introduced into human T-cells, using a third-generation lentiviral vector. SupT1 cells stably expressing 2LTRZFP alone or with Myr(+)Ank(GAG)1D4 showed a complete resistance to HIV-1 in viral challenge. Administration of the Myr(+)Ank(GAG)1D4 vector to HIV-1-preinfected SupT1 cells resulted in a significant antiviral effect. Resistance to viral infection was also observed in primary human CD4+ T-cells stably expressing Myr(+)Ank(GAG)1D4, and challenged with HIV-1, SIVmac, or SHIV. Our data suggest that our two anti-HIV-1 molecular scaffold prototypes are promising antiviral agents for anti-HIV-1 gene therapy.

6.
J Comput Aided Mol Des ; 28(8): 869-84, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24997121

RESUMO

Ankyrins are cellular repeat proteins, which can be genetically modified to randomize amino-acid residues located at defined positions in each repeat unit, and thus create a potential binding surface adaptable to macromolecular ligands. From a phage-display library of artificial ankyrins, we have isolated Ank(GAG)1D4, a trimodular ankyrin which binds to the HIV-1 capsid protein N-terminal domain (NTD(CA)) and has an antiviral effect at the late steps of the virus life cycle. In this study, the determinants of the Ank(GAG)1D4-NTD(CA) interaction were analyzed using peptide scanning in competition ELISA, capsid mutagenesis, ankyrin crystallography and molecular modeling. We determined the Ank(GAG)1D4 structure at 2.2 Å resolution, and used the crystal structure in molecular docking with a homology model of HIV-1 capsid. Our results indicated that NTD(CA) alpha-helices H1 and H7 could mediate the formation of the capsid-Ank(GAG)1D4 binary complex, but the interaction involving H7 was predicted to be more stable than with H1. Arginine-18 (R18) in H1, and R132 and R143 in H7 were found to be the key players of the Ank(GAG)1D4-NTD(CA) interaction. This was confirmed by R-to-A mutagenesis of NTD(CA), and by sequence analysis of trimodular ankyrins negative for capsid binding. In Ank(GAG)1D4, major interactors common to H1 and H7 were found to be S45, Y56, R89, K122 and K123. Collectively, our ankyrin-capsid binding analysis implied a significant degree of flexibility within the NTD(CA) domain of the HIV-1 capsid protein, and provided some clues for the design of new antivirals targeting the capsid protein and viral assembly.


Assuntos
Anquirinas/farmacologia , Antivirais/farmacologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , HIV-1/efeitos dos fármacos , Sequência de Aminoácidos , Proteínas do Capsídeo/genética , Cristalografia por Raios X , Ensaio de Imunoadsorção Enzimática , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/crescimento & desenvolvimento , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Montagem de Vírus
7.
Appl Microbiol Biotechnol ; 98(13): 6095-103, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24805844

RESUMO

Immunochromatographic strip test is a unique type of rapid test that has been developed for use as part of a diagnostic kit for the rapid detection of antibodies and/or other proteins of interest. For the detection of target proteins, most of the commercial tests are assembled based on the conjugation of colloidal gold particles to monoclonal antibodies embedded within the conjugate pad of a strip test. In this study, we tested the novel concept of using an artificial non-antibody structure for generating a colloidal gold conjugate (CGC). We exploited the property of an ankyrin repeat protein that specifically binds to the HIV-1 capsid protein termed Ank(GAG)1D4. This construct was applied as a model structure to create Ank1D4-CGC and used as a new type of visible detector system and termed it ankyrin-based immunochromatographic strip (ABIS) test. The ABIS test was shown to be highly sensitive with a lower limit of detection of the target protein at 0.1 µg/ml. Moreover, the ABIS test was not only highly sensitive but also shared a level of specificity within the same range of the commercial test kit. The results of the studies presented herein therefore demonstrate the novel application of an artificial non-immunoglobulin structure (ankyrin repeat protein) as the new line of a visible detector using a rapid diagnostic test with characteristics that have the potential to be superior to those that utilize antibody-based tests.


Assuntos
Repetição de Anquirina , Proteínas do Capsídeo/isolamento & purificação , Cromatografia de Afinidade/métodos , Escherichia coli/metabolismo , HIV-1/isolamento & purificação , Proteínas Recombinantes/metabolismo , Ligação Proteica , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...