Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 11(12)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38137463

RESUMO

Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene that disrupt the open reading frame and thus prevent production of functional dystrophin proteins. Recent advances in DMD treatment, notably exon skipping and AAV gene therapy, have achieved some success aimed at alleviating the symptoms related to progressive muscle damage. However, they do not address the brain comorbidities associated with DMD, which remains a critical aspect of the disease. The mdx52 mouse model recapitulates one of the most frequent genetic pathogenic variants associated with brain involvement in DMD. Deletion of exon 52 impedes expression of two brain dystrophins, Dp427 and Dp140, expressed from distinct promoters. Interestingly, this mutation is eligible for exon skipping strategies aimed at excluding exon 51 or 53 from dystrophin mRNA. We previously showed that exon 51 skipping can restore partial expression of internally deleted yet functional Dp427 in the brain following intracerebroventricular (ICV) injection of antisense oligonucleotides (ASO). This was associated with a partial improvement of anxiety traits, unconditioned fear response, and Pavlovian fear learning and memory in the mdx52 mouse model. In the present study, we investigated in the same mouse model the skipping of exon 53 in order to restore expression of both Dp427 and Dp140. However, in contrast to exon 51, we found that exon 53 skipping was particularly difficult in mdx52 mice and a combination of multiple ASOs had to be used simultaneously to reach substantial levels of exon 53 skipping, regardless of their chemistry (tcDNA, PMO, or 2'MOE). Following ICV injection of a combination of ASO sequences, we measured up to 25% of exon 53 skipping in the hippocampus of treated mdx52 mice, but this did not elicit significant protein restoration. These findings indicate that skipping mouse dystrophin exon 53 is challenging. As such, it has not yet been possible to answer the pertinent question whether rescuing both Dp427 and Dp140 in the brain is imperative to more optimal treatment of neurological aspects of dystrophinopathy.

2.
Mol Ther Nucleic Acids ; 32: 173-188, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37078061

RESUMO

The mdx52 mouse model recapitulates a frequent mutation profile associated with brain involvement in Duchenne muscular dystrophy. Deletion of exon 52 impedes expression of two dystrophins (Dp427, Dp140) expressed in brain, and is eligible for therapeutic exon-skipping strategies. We previously showed that mdx52 mice display enhanced anxiety and fearfulness, and impaired associative fear learning. In this study, we examined the reversibility of these phenotypes using exon 51 skipping to restore exclusively Dp427 expression in the brain of mdx52 mice. We first show that a single intracerebroventricular administration of tricyclo-DNA antisense oligonucleotides targeting exon 51 restores 5%-15% of dystrophin protein expression in the hippocampus, cerebellum, and cortex, at stable levels between 7 and 11 week after injection. Anxiety and unconditioned fear were significantly reduced in treated mdx52 mice and acquisition of fear conditioning appeared fully rescued, while fear memory tested 24 h later was only partially improved. Additional restoration of Dp427 in skeletal and cardiac muscles by systemic treatment did not further improve the unconditioned fear response, confirming the central origin of this phenotype. These findings indicate that some emotional and cognitive deficits associated with dystrophin deficiency may be reversible or at least improved by partial postnatal dystrophin rescue.

3.
Cells ; 12(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36980249

RESUMO

Nucleic acid-based therapies have demonstrated great potential for the treatment of monogenetic diseases, including neurologic disorders. To date, regulatory approval has been received for a dozen antisense oligonucleotides (ASOs); however, these chemistries cannot readily cross the blood-brain barrier when administered systemically. Therefore, an investigation of their potential effects within the central nervous system (CNS) requires local delivery. Here, we studied the brain distribution and exon-skipping efficacy of two ASO chemistries, PMO and tcDNA, when delivered to the cerebrospinal fluid (CSF) of mice carrying a deletion in exon 52 of the dystrophin gene, a model of Duchenne muscular dystrophy (DMD). Following intracerebroventricular (ICV) delivery (unilateral, bilateral, bolus vs. slow rate, repeated via cannula or very slow via osmotic pumps), ASO levels were quantified across brain regions and exon 51 skipping was evaluated, revealing that tcDNA treatment invariably generates comparable or more skipping relative to that with PMO, even when the PMO was administered at higher doses. We also performed intra-cisterna magna (ICM) delivery as an alternative route for CSF delivery and found a biased distribution of the ASOs towards posterior brain regions, including the cerebellum, hindbrain, and the cervical part of the spinal cord. Finally, we combined both ICV and ICM injection methods to assess the potential of an additive effect of this methodology in inducing efficient exon skipping across different brain regions. Our results provide useful insights into the local delivery and associated efficacy of ASOs in the CNS in mouse models of DMD. These findings pave the way for further ASO-based therapy application to the CNS for neurological disease.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Animais , Camundongos , Distrofina/genética , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/tratamento farmacológico , Éxons/genética , Oligonucleotídeos Antissenso/uso terapêutico , Sistema Nervoso Central
4.
Dis Model Mech ; 14(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34546327

RESUMO

The exon-52-deleted mdx52 mouse is a critical model of Duchenne muscular dystrophy (DMD), as it features a deletion in a hotspot region of the DMD gene, frequently mutated in patients. Deletion of exon 52 impedes expression of several brain dystrophins (Dp427, Dp260 and Dp140), thus providing a key model for studying the cognitive impairment associated with DMD and testing rescuing strategies. Here, using in vivo magnetic resonance imaging and neurohistology, we found no gross brain abnormalities in mdx52 mice, suggesting that the neural dysfunctions in this model are likely at the level of brain cellular functionalities. Then, we investigated emotional behavior and fear learning performance of mdx52 mice compared to mdx mice that only lack Dp427 to focus on behavioral phenotypes that could be used in future comparative preclinical studies. mdx52 mice displayed enhanced anxiety and a severe impairment in learning an amygdala-dependent Pavlovian association. These replicable behavioral outcome measures are reminiscent of the internalizing problems reported in a quarter of DMD patients, and will be useful for preclinical estimation of the efficacy of treatments targeting brain dysfunctions in DMD.


Assuntos
Distrofia Muscular de Duchenne , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Distrofina/genética , Éxons/genética , Humanos , Camundongos , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/genética
5.
Med Sci (Paris) ; 37(6-7): 625-631, 2021.
Artigo em Francês | MEDLINE | ID: mdl-34180822

RESUMO

Advances in genetic and genomic research continue to increase our knowledge of hereditary diseases, and an increasing number of them are being attributed to aberrant splicing, thus representing ideal targets for RNA modulation therapies. New strategies to skip or re-include exons during the splicing process have emerged and are now widely evaluated in the clinic. Several drugs have recently been approved in particular for the treatment of Duchenne muscular dystrophy and spinal muscular atrophy. Among these molecules, antisense oligonucleotides, or ASOs, have gained increasing interest and have constantly been improved over the years through chemical modifications and design. However, their limited biodistribution following systemic administration still represents a major hurdle and the development of more potent alternative chemistries or new delivery systems has become a very active line of research in the past few years. In parallel, the use of small molecules with excellent biodistribution properties or of viral vectors to convey antisense sequences is also being investigated. In this review, we summarize the recent advances in splicing therapies through two examples of neuromuscular diseases and we discuss their main benefits and current limitations.


TITLE: Les approches thérapeutiques de modulation de l'épissage - Avancées et perspectives. ABSTRACT: Les avancées en recherches génétique et génomique ne cessent d'accroître nos connaissances des maladies héréditaires. Un nombre croissant de ces maladies relève d'épissages aberrants qui représentent des cibles idéales pour les approches correctives centrées sur l'ARN. De nouvelles stratégies, en particulier médicamenteuses, visant à exclure ou à ré-inclure des exons lors du processus d'épissage, ont ainsi émergé et plusieurs molécules ont récemment obtenu des autorisations de mise sur le marché, notamment pour le traitement de la dystrophie musculaire de Duchenne et de l'amyotrophie spinale, suscitant de plus en plus d'intérêt et d'espoir. Parmi ces molécules, les oligonucléotides antisens, ou ASO, ont connu un réel essor et font l'objet de progrès constants en matière de modifications chimiques et de conception. Toutefois, leur biodistribution après administration par voie générale demeure souvent limitée, et le développement de chimies alternatives plus performantes et de nouveaux systèmes d'adressage est devenu un axe de recherche très actif. En parallèle, l'utilisation de petites molécules présentant une excellente biodistribution, ou de vecteurs viraux pour véhiculer les séquences antisens, est également explorée. Dans cette Synthèse, nous présentons les dernières avancées de ces approches de modulation d'épissage à travers deux exemples de maladies neuromusculaires. Nous discutons de leurs avantages et des principales limitations actuelles.


Assuntos
Terapia Genética , Splicing de RNA , Humanos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Oligonucleotídeos Antissenso/genética , Distribuição Tecidual
6.
Neurobiol Dis ; 152: 105288, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33556541

RESUMO

The mdx52 mouse model of Duchenne muscular dystrophy (DMD) is lacking exon 52 of the DMD gene that is located in a hotspot mutation region causing cognitive deficits and retinal anomalies in DMD patients. This deletion leads to the loss of the dystrophin proteins, Dp427, Dp260 and Dp140, while Dp71 is preserved. The flash electroretinogram (ERG) in mdx52 mice was previously characterized by delayed dark-adapted b-waves. A detailed description of functional ERG changes and visual performances in mdx52 mice is, however, lacking. Here an extensive full-field ERG repertoire was applied in mdx52 mice and WT littermates to analyze retinal physiology in scotopic, mesopic and photopic conditions in response to flash, sawtooth and/or sinusoidal stimuli. Behavioral contrast sensitivity was assessed using quantitative optomotor response (OMR) to sinusoidally modulated luminance gratings at 100% or 50% contrast. The mdx52 mice exhibited reduced amplitudes and delayed implicit times in dark-adapted ERG flash responses, particularly in their b-wave and oscillatory potentials, and diminished amplitudes of light-adapted flash ERGs. ERG responses to sawtooth stimuli were also diminished and delayed for both mesopic and photopic conditions in mdx52 mice and the first harmonic amplitudes to photopic sine-wave stimuli were smaller at all temporal frequencies. OMR indices were comparable between genotypes at 100% contrast but significantly reduced in mdx52 mice at 50% contrast. The complex ERG alterations and disturbed contrast vision in mdx52 mice include features observed in DMD patients and suggest altered photoreceptor-to-bipolar cell transmission possibly affecting contrast sensitivity. The mdx52 mouse is a relevant model to appraise the roles of retinal dystrophins and for preclinical studies related to DMD.


Assuntos
Distrofia Muscular de Duchenne/fisiopatologia , Percepção Visual/fisiologia , Animais , Eletrorretinografia , Camundongos , Camundongos Endogâmicos mdx , Transmissão Sináptica/fisiologia
7.
Environ Monit Assess ; 189(7): 361, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28667413

RESUMO

Blooms of toxic cyanobacteria in Algerian reservoirs represent a potential health problem, mainly from drinking water that supplies the local population of Ain Zada (Bordj Bou Arreridj). The objective of this study is to monitor, detect, and identify the existence of cyanobacteria and microcystins during blooming times. Samples were taken in 2013 from eight stations. The results show that three potentially toxic cyanobacterial genera with the species Planktothrix agardhii were dominant. Cyanobacterial biomass, phycocyanin (PC) concentrations, and microcystin (MC) concentrations were high in the surface layer and at 14 m depth; these values were also high in the treated water. On 11 May 2013, MC concentrations were 6.3 µg/L in MC-LR equivalent in the drinking water. This study shows for the first time the presence of cyanotoxins in raw and treated waters, highlighting that regular monitoring of cyanobacteria and cyanotoxins must be undertaken to avoid potential health problems.


Assuntos
Água Potável/microbiologia , Purificação da Água/métodos , Biomassa , Cianobactérias/classificação , Monitoramento Ambiental , Toxinas Marinhas , Microcistinas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...