Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 291(44): 23208-23223, 2016 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-27605668

RESUMO

Pancreatic ductal adenocarcinomas are highly malignant cancers characterized by extensive invasion into surrounding tissues, metastasis to distant organs, and a limited response to therapy. A main feature of pancreatic ductal adenocarcinomas is desmoplasia, which leads to extensive deposition of collagen I. We have demonstrated that collagen I can induce epithelial-mesenchymal transition (EMT) in pancreatic cancer cells. A hallmark of EMT is an increase in the expression of the mesenchymal cadherin N-cadherin. Previously we showed up-regulation of N-cadherin promotes tumor cell invasion and that collagen I-induced EMT is mediated by two collagen receptors, α2ß1-integrin and discoidin domain receptor 1 (DDR1). DDR1 is a receptor-tyrosine kinase widely expressed during embryonic development and in many adult tissues and is also highly expressed in many different cancers. In the signaling pathway initiated by collagen, we have shown proline-rich tyrosine kinase 2 (Pyk2) is downstream of DDR1. In this study we found isoform b of DDR1 is responsible for collagen I-induced up-regulation of N-cadherin and tyrosine 513 of DDR1b is necessary. Knocking down Shc1, which binds to tyrosine 513 of DDR1b via its PTB (phosphotyrosine binding) domain, eliminates the up-regulation of N-cadherin. The signaling does not require a functional SH2 domain or the tyrosine residues commonly phosphorylated in Shc1 but is mediated by the interaction between a short segment of the central domain of Shc1 and the proline-rich region of Pyk2. Taken together, these data illustrate DDR1b, but not DDR1a, mediates collagen I-induced N-cadherin up-regulation, and Shc1 is involved in this process by coupling to both DDR1 and Pyk2.


Assuntos
Caderinas/genética , Carcinoma Ductal Pancreático/metabolismo , Colágeno Tipo I/metabolismo , Receptor com Domínio Discoidina 1/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo , Caderinas/metabolismo , Carcinoma Ductal Pancreático/enzimologia , Carcinoma Ductal Pancreático/genética , Colágeno Tipo I/genética , Receptor com Domínio Discoidina 1/química , Receptor com Domínio Discoidina 1/genética , Humanos , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transdução de Sinais , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/química , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética , Ativação Transcricional , Regulação para Cima
2.
J Cell Sci ; 127(Pt 17): 3782-93, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25002405

RESUMO

Desmosomes are prominent adhesive junctions found in various epithelial tissues. The cytoplasmic domains of desmosomal cadherins interact with a host of desmosomal plaque proteins, including plakophilins, plakoglobin and desmoplakin, which, in turn, recruit the intermediate filament cytoskeleton to sites of cell-cell contact. Although the individual components of the desmosome are known, mechanisms regulating the assembly of this junction are poorly understood. Protein palmitoylation is a posttranslational lipid modification that plays an important role in protein trafficking and function. Here, we demonstrate that multiple desmosomal components are palmitoylated in vivo. Pharmacologic inhibition of palmitoylation disrupts desmosome assembly at cell-cell borders. We mapped the site of plakophilin palmitoylation to a conserved cysteine residue present in the armadillo repeat domain. Mutation of this single cysteine residue prevents palmitoylation, disrupts plakophilin incorporation into the desmosomal plaque and prevents plakophilin-dependent desmosome assembly. Finally, plakophilin mutants unable to become palmitoylated act in a dominant-negative manner to disrupt proper localization of endogenous desmosome components and decrease desmosomal adhesion. Taken together, these data demonstrate that palmitoylation of desmosomal components is important for desmosome assembly and adhesion.


Assuntos
Movimento Celular/fisiologia , Desmossomos/metabolismo , Lipoilação/fisiologia , Placofilinas/metabolismo , Linhagem Celular Tumoral , Desmoplaquinas/metabolismo , Humanos , gama Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...