Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(50): 18437-18446, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38051657

RESUMO

We employed molecular dynamics (MD) simulations coupled with umbrella sampling to explore the thermodynamics governing the exfoliation of a single graphene layer from a graphitic substrate in five different solvents such as dimethylacetamide (DMA), N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO), cyclohexane (CHX), and water. The substrate was modeled as a stack of three identical graphene layers with the graphene sheet undergoing exfoliation positioned on top of this stack. The initial configurations for each umbrella simulation were generated through steered MD simulations carried out along two distinct coordinates: one parallel and the other perpendicular to the graphene layers. Our analyses revealed a uniform wetting behavior for both the nanosheet and the graphitic substrate in all of the tested solvents. Consistent with experimental observations, the steered simulations confirmed that exfoliation is more favorable along the parallel direction than along the perpendicular one. All non-water solvents exhibit comparable effectiveness in the exfoliation of graphene. The calculated free energies of these solvents in parallel exfoliation consistently fell within the range of 90-100 kJ/mol/nm2. In perpendicular exfoliation, however, the corresponding energies converge to lower values. This difference is attributed to the nonequilibrium nature of the perpendicular exfoliation, primarily caused by the great steering velocity of the graphene sheet immediately after detachment from the substrate. This rapid motion of the nanosheet along the perpendicular coordinate results in an elevated system energy and heating.

2.
Membranes (Basel) ; 13(5)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37233531

RESUMO

In the present work, Pebax-1657, a commercial multiblock copolymer (poly(ether-block-amide)), consisting of 40% rigid amide (PA6) groups and 60% flexible ether (PEO) linkages, was selected as the base polymer for preparing dense flat sheet mixed matrix membranes (MMMs) using the solution casting method. Carbon nanofillers, specifically, raw and treated (plasma and oxidized) multi-walled carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs) were incorporated into the polymeric matrix in order to improve the gas-separation performance and polymer's structural properties. The developed membranes were characterized by means of SEM and FTIR, and their mechanical properties were also evaluated. Well-established models were employed in order to compare the experimental data with theoretical calculations concerning the tensile properties of MMMs. Most remarkably, the tensile strength of the mixed matrix membrane with oxidized GNPs was enhanced by 55.3% compared to the pure polymeric membrane, and its tensile modulus increased 3.2 times compared to the neat one. In addition, the effect of nanofiller type, structure and amount to real binary CO2/CH4 (10/90 vol.%) mixture separation performance was evaluated under elevated pressure conditions. A maximum CO2/CH4 separation factor of 21.9 was reached with CO2 permeability of 384 Barrer. Overall, MMMs exhibited enhanced gas permeabilities (up to fivefold values) without sacrificing gas selectivity compared to the corresponding pure polymeric membrane.

3.
ACS Appl Mater Interfaces ; 15(14): 18493-18504, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36989435

RESUMO

Superhydrophobicity has only recently become a requirement in membrane fabrication and modification. Superhydrophobic membranes have shown improved flux performance and scaling resistance in long-term membrane distillation (MD) operations compared to simply hydrophobic membranes. Here, we introduce plasma micro- and nanotexturing followed by plasma deposition as a novel, dry, and green method for superhydrophobic membrane fabrication. Using plasma micro- and nanotexturing, commercial membranes, both hydrophobic and hydrophilic, are transformed to superhydrophobic featuring water static contact angles (WSCA) greater than 150° and contact angle hysteresis lower than 10°. To this direction, hydrophobic polytetrafluoroethylene (PTFE) and hydrophilic cellulose acetate (CA) membranes are transformed to superhydrophobic. The superhydrophobic PTFE membranes showed enhanced water flux in standard air gap membrane distillation and more stable performance compared to the commercial ones for at least 48 h continuous operation, with salt rejection >99.99%. Additionally, their performance and high salt rejection remained stable, when low surface tension solutions containing sodium dodecyl sulfate (SDS) and NaCl (down to 35 mN/m) were used, showcasing their antiwetting properties. The improved performance is attributed to superhydrophobicity and increased pore size after plasma micro- and nanotexturing. More importantly, CA membranes, which are initially unsuitable for MD due to their hydrophilic nature (WSCA ≈ 40°), showed excellent performance with stable flux and salt rejection >99.2% again for at least 48 h, demonstrating the effectiveness of the proposed method for wetting control in membranes regardless of their initial wetting properties.

4.
Chemosphere ; 286(Pt 1): 131609, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34315074

RESUMO

The systematic analysis of groundwater in the Greek island of Skiathos revealed a seasonal increase of total mercury concentrations after the extensive groundwater abstraction during the busy and heavily touristic summer months. This contamination was accompanied by a corresponding increase of the chloride content of groundwater, attributed to seawater intrusion into the freshwater-depleted aquifer within mercury-rich bedrock. The effects of elevated concentrations of chloride anions in the mobilization of mercury and its speciation were addressed by geochemical equilibrium modeling, considering cinnabar (HgS) as the mineral source of mercury. Adsorption onto hydrous ferric oxide (Fe2O3·H2O) was a necessary ingredient of the geochemical model for bringing the calculated concentrations in agreement with field measurements, after optimization of the cinnabar/adsorbent mass ratio to a value of 4.9 × 10-8. The speciation of mercury was found to depend on the acidity and redox status as well as on the chloride content of groundwater. Mercury concentrations in the groundwater of Skiathos rise above the World Health Organization limit of 1 µg L-1 for a seawater intrusion higher than 3 %, with HgCl2 being the dominant species followed by HgClOH, HgCl3- and HgCl42-. The assumed concentration of dissolved organic matter in groundwater had a negligible impact on the mercury speciation and its mobilization by chloride.


Assuntos
Água Subterrânea , Mercúrio , Poluentes Químicos da Água , Monitoramento Ambiental , Água Doce , Mercúrio/análise , Água do Mar , Poluentes Químicos da Água/análise
5.
Int J Mol Sci ; 22(15)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34361058

RESUMO

Monolayer graphene is now produced at significant yields, by liquid phase exfoliation of graphites in solvents. This has increased the interest in molecular simulation studies to give new insights in the field. We use decoupling simulations to compute the exfoliation free energy of graphenes in a liquid environment. Starting from a bilayer graphene configuration, we decouple the Van der Waals interactions of a graphene monolayer in the presence of saline water. Then, we introduce the monolayer back into water by coupling its interactions with water molecules and ions. A different approach to compute the graphene exfoliation free energy is to use umbrella sampling. We apply umbrella sampling after pulling the graphene monolayer on the shear direction up to a distance from a bilayer. We show that the decoupling and umbrella methods give highly consistent free energy results for three bilayer graphene samples with different size. This strongly suggests that the systems in both methods remain closely in equilibrium as we move between the states before and after the exfoliation. Therefore, the amount of nonequilibrium work needed to peel the two layers apart is minimized efficiently.


Assuntos
Grafite/química , Simulação de Dinâmica Molecular , Transição de Fase , Solventes/química , Termodinâmica , Entropia
6.
Nanomaterials (Basel) ; 11(2)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499034

RESUMO

The main scope of this work is to develop nano-carbon-based mixed matrix cellulose acetate membranes (MMMs) for the potential use in both gas and liquid separation processes. For this purpose, a variety of mixed matrix membranes, consisting of cellulose acetate (CA) polymer and carbon nanotubes as additive material were prepared, characterized, and tested. Multi-walled carbon nanotubes (MWCNTs) were used as filler material and diacetone alcohol (DAA) as solvent. The first main objective towards highly efficient composite membranes was the proper preparation of agglomerate-free MWCNTs dispersions. Rotor-stator system (RS) and ultrasonic sonotrode (USS) were used to achieve the nanofillers' dispersion. In addition, the first results of the application of the three-roll mill (TRM) technology in the filler dispersion achieved were promising. The filler material, MWCNTs, was characterized by scanning electron microscopy (SEM) and liquid nitrogen (LN2) adsorption-desorption isotherms at 77 K. The derivatives CA-based mixed matrix membranes were characterized by tensile strength and water contact angle measurements, impedance spectroscopy, gas permeability/selectivity measurements, and water permeability tests. The studied membranes provide remarkable water permeation properties, 12-109 L/m2/h/bar, and also good separation factors of carbon dioxide and helium separations. Specifically, a separation factor of 87 for 10% He/N2 feed concentration and a selectivity value of 55.4 for 10% CO2/CH4 feed concentration were achieved.

7.
Front Chem ; 8: 564838, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33094101

RESUMO

In this work, we report on a facile and rapid synthetic procedure to create highly porous heterostructures with tailored properties through the silylation of organically modified graphene oxide. Three silica precursors with various structural characteristics (comprising alkyl or phenyl groups) were employed to create high-yield silica networks as pillars between the organo-modified graphene oxide layers. The removal of organic molecules through the thermal decomposition generates porous heterostructures with very high surface areas (≥ 500 m2/g), which are very attractive for potential use in diverse applications such as catalysis, adsorption and as fillers in polymer nanocomposites. The final hybrid products were characterized by X-ray diffraction, Fourier transform infrared and X-ray photoelectron spectroscopies, thermogravimetric analysis, scanning electron microscopy and porosity measurements. As proof of principle, the porous heterostructure with the maximum surface area was chosen for investigating its CO2 adsorption properties.

8.
Polymers (Basel) ; 12(6)2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575517

RESUMO

Polyimides rank among the most heat-resistant polymers and find application in a variety of fields, including transportation, electronics, and membrane technology. The aim of this work is to study the structural, thermal, mechanical, and gas permeation properties of polyimide based nanocomposite membranes in flat sheet configuration. For this purpose, numerous advanced techniques such as atomic force microscopy (AFM), SEM, TEM, TGA, FT-IR, tensile strength, elongation test, and gas permeability measurements were carried out. In particular, BTDA-TDI/MDI (Ρ84) co-polyimide was used as the matrix of the studied membranes, whereas multi-wall carbon nanotubes were employed as filler material at concentrations of up to 5 wt.% All studied films were prepared by the dry-cast process resulting in non-porous films of about 30-50 µm of thickness. An optimum filler concentration of 2 wt.% was estimated. At this concentration, both thermal and mechanical properties of the prepared membranes were improved, and the highest gas permeability values were also obtained. Finally, gas permeability experiments were carried out at 25, 50, and 100 °C with seven different pure gases. The results revealed that the uniform carbon nanotubes dispersion lead to enhanced gas permeation properties.

9.
Pestic Biochem Physiol ; 165: 104535, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32359556

RESUMO

There is a consensus on the urge for the discovery and assessment of alternative, improved sources of bioactivity that could be developed as plant protection products (PPPs), in order to combat issues that the agrochemical sector is facing. Based on the recent advances in nanotechnology, nanoparticles seem to have a great potential towards the development of the next generation nano-PPPs used as active ingredients (a.i.) per se or as nanocarriers in their formulation. Nonetheless, information on their mode(s)-of-action (MoA) and mechanisms of toxicity is yet largely unknown, representing a bottleneck in their further assessment and development. Therefore, we have undertaken the task to assess the fungitoxicity of hyperbranched poly(ethyleneimine) (HPEI), quaternized hyperbranched poly(ethyleneimine) (QPEI), and guanidinylated hyperbranched poly(ethyleneimine) (GPEI) nanoparticles to the soil-born plant pathogenic fungus Verticillium dahliae Kleb, and dissect their effects on its metabolism applying GC/EI/MS metabolomics. Results revealed that functionalization of HPEI nanoparticles with guanidinium end groups (GPEI) increases their toxicity to V. dahliae, while functionalization with quaternary ammonium end groups (QPEI) decreases it. The treatments with the nanoparticles affected the chemical homeostasis of the fungus, altering substantially its amino acid pool, energy production, and fatty acid content, causing additionally oxidative and osmotic stresses. To the best of our knowledge, this is the first report on the comparative toxicity of HPEI, QPEI, and GPEI to filamentous fungi applying metabolomics. The findings could be exploited in the study of the quantitative structure-activity relationship (QSAR) of HPEI-derived nanoparticles and their further development as nano-PPPs.


Assuntos
Aziridinas , Nanopartículas , Verticillium , Metabolômica , Doenças das Plantas , Solo
10.
Materials (Basel) ; 13(7)2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32283814

RESUMO

Ulvan, a bioactive natural sulfated polysaccharide, and gelatin, a collagen-derived biopolymer, have attracted interest for the preparation of biomaterials for different biomedical applications, due to their demonstrated compatibility for cell attachment and proliferation. Both ulvan and gelatin have exhibited osteoinductive potential, either alone or in combination with other materials. In the current work, a series of novel hybrid scaffolds based on crosslinked ulvan and gelatin was designed, prepared and characterized. Their mechanical performance, thermal stability, porosity, water-uptake and in vitro degradation ability were assessed, while their morphology was analyzed through scanning electron microscopy. The prepared hybrid ulvan/gelatin scaffolds were characterized by a highly porous and interconnected structure. Human adipose-derived mesenchymal stem cells (hADMSCs) were seeded in selected ulvan/gelatin hybrid scaffolds and their adhesion, survival, proliferation, and osteogenic differentiation efficiency was evaluated. Overall, it was found that the prepared hybrid sponge-like scaffolds could efficiently support mesenchymal stem cells' adhesion and proliferation, suggesting that such scaffolds could have potential uses in bone tissue engineering.

11.
Polymers (Basel) ; 12(2)2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32033433

RESUMO

This work focused on enhancing the flux on hydrophobic polymeric membranes aimed for direct contact membrane distillation desalination (DCMD) process without compromising salt rejection efficiency. Successful coating of commercial porous poly-tetrafluoroethylene membranes with poly(vinyl alcohol) (PVA) was achieved by solution dipping followed by a cross-linking step. The modified membranes were evaluated for their performance in DCMD, in terms of water flux and salt rejection. A series of different PVA concentration dipping solutions were used, and the results indicated that there was an optimum concentration after which the membranes became hydrophilic and unsuitable for use in membrane distillation. Best performing membranes were achieved under the specific experimental conditions, water flux 12.2 L·m-2·h-1 [LMH] with a salt rejection of 99.9%. Compared to the pristine membrane, the flux was enhanced by a factor of 2.7. The results seemed to indicate that introducing hydrophilic characteristics in a certain amount to a hydrophobic membrane could significantly enhance the membrane distillation (MD) performance without compromising salt rejection.

12.
J Hazard Mater ; 189(1-2): 384-90, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21398027

RESUMO

A copper-nanoparticle-doped carbon was prepared from an alginate based precursor in a one step carbonisation-reduction procedure based on the modified polyol process. The ion exchange capacity of the precursor as well as the porosity, metal content, thermal properties, of the final product, were investigated. The preparation route leads to a porous carbon/copper composite with predefined metal loading reaching up to over 30% (w/w) of finely dispersed Cu nanoparticles of fairly uniform size. NO catalytic abatement evaluation showed high efficiency even at low temperatures compared to other recently reported carbon supported catalysts.


Assuntos
Cobre/química , Metais/química , Nanopartículas/química , Ácido Nítrico/química , Alginatos/química , Carbono/química , Catálise , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Troca Iônica , Oxirredução , Porosidade , Temperatura
13.
Carbohydr Res ; 345(4): 469-73, 2010 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-20044077

RESUMO

FTIR spectroscopy was used in order to obtain information about metal-carboxylate interactions in metal-alginate complexes of alginic acid and sodium alginate from the brown algae Laminaria digitata after crosslinking with Ca(2+), Cu(2+), Cd(2+), Zn(2+), Ni(2+) and Pb(2+). From the frequencies of the characteristic peaks for asymmetric COO stretching vibration (nu(asym)(COO(-)) and symmetric COO stretching vibration (nu(sym)(COO(-))) a 'pseudo bridged' unidentate coordination with intermolecular hydrogen bonds is proposed for the metal-carboxylate complexes in polyguluronic regions while for the polymannuronic regions the bidentate bridging coordination was proposed. The PIB factor introduced previously as a relationship between metal sorption and frequencies of the asymmetric vibrations was found not to correlate with sorption capacity or any other physical property of the metal-alginate complexes studied.


Assuntos
Alginatos/química , Laminaria/química , Metais/química , Compostos Organometálicos/química , Absorção , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Ligação de Hidrogênio , Polissacarídeos Bacterianos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...