Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Public Health ; 10: 885212, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35548086

RESUMO

Percentage mammographic breast density (MBD) is one of the most notable biomarkers. It is assessed visually with the support of radiologists with the four qualitative Breast Imaging Reporting and Data System (BIRADS) categories. It is demanding for radiologists to differentiate between the two variably allocated BIRADS classes, namely, "BIRADS C and BIRADS D." Recently, convolution neural networks have been found superior in classification tasks due to their ability to extract local features with shared weight architecture and space invariance characteristics. The proposed study intends to examine an artificial intelligence (AI)-based MBD classifier toward developing a latent computer-assisted tool for radiologists to distinguish the BIRADS class in modern clinical progress. This article proposes a multichannel DenseNet architecture for MBD classification. The proposed architecture consists of four-channel DenseNet transfer learning architecture to extract significant features from a single patient's two a mediolateral oblique (MLO) and two craniocaudal (CC) views of digital mammograms. The performance of the proposed classifier is evaluated using 200 cases consisting of 800 digital mammograms of the different BIRADS density classes with validated density ground truth. The classifier's performance is assessed with quantitative metrics such as precision, responsiveness, specificity, and the area under the curve (AUC). The concluding preliminary outcomes reveal that this intended multichannel model has delivered good performance with an accuracy of 96.67% during training and 90.06% during testing and an average AUC of 0.9625. Obtained results are also validated qualitatively with the help of a radiologist expert in the field of MBD. Proposed architecture achieved state-of-the-art results with a fewer number of images and with less computation power.


Assuntos
Densidade da Mama , Neoplasias da Mama , Inteligência Artificial , Neoplasias da Mama/diagnóstico por imagem , Feminino , Humanos , Mamografia/métodos , Redes Neurais de Computação
2.
Comput Methods Programs Biomed ; 163: 1-20, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30119844

RESUMO

BACKGROUND AND OBJECTIVE: Early detection is the important key to reduce breast cancer mortality rate. Detecting the mammographic abnormality as a subtle sign of breast cancer is essential for the proper diagnosis and treatment. The aim of this preliminary study is to develop algorithms which detect suspicious lesions and characterize them to reduce the diagnostic errors regarding false positives and false negatives. METHODS: The proposed hybrid mechanism detects suspicious lesions automatically using connected component labeling and adaptive fuzzy region growing algorithm. A novel neighboring pixel selection algorithm reduces the computational complexity of the seeded region growing algorithm used to finalize lesion contours. These lesions are characterized using radiomic features and then classified as benign mass or malignant tumor using k-NN and SVM classifiers. Two datasets of 460 full field digital mammograms (FFDM) utilized in this clinical study consists of 210 images with malignant tumors, 30 with benign masses and 220 normal breast images that are validated by radiologists expert in mammography. RESULTS: The qualitative assessment of segmentation results by the expert radiologists shows 91.67% sensitivity and 58.33% specificity. The effects of seven geometric and 48 textural features on classification accuracy, false positives per image (FPsI), sensitivity and specificity are studied separately and together. The features together achieved the sensitivity of 84.44% and 85.56%, specificity of 91.11% and 91.67% with FPsI of 0.54 and 0.55 using k-NN and SVM classifiers respectively on local dataset. CONCLUSIONS: The overall breast cancer detection performance of proposed scheme after combining geometric and textural features with both classifiers is improved in terms of sensitivity, specificity, and FPsI.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Mama/diagnóstico por imagem , Mamografia/métodos , Intensificação de Imagem Radiográfica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Algoritmos , Mama/patologia , Estudos de Casos e Controles , Diagnóstico por Computador , Reações Falso-Positivas , Feminino , Lógica Fuzzy , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...