Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Medicina (Kaunas) ; 60(1)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38256402

RESUMO

Background and Objectives: Colorectal cancer (CRC) is a major global health challenge. The BRAF V600E mutation, found in 8-12% of CRC patients, exacerbates this by conferring poor prognosis and resistance to therapy. Our study focuses on the efficacy of the HAMLET complex, a molecular substance derived from human breast milk, on CRC cell lines and ex vivo biopsies harboring this mutation, given its previously observed selective toxicity to cancer cells. Materials and Methods: we explored the effects of combining HAMLET with the FOLFOX chemotherapy regimen on CRC cell lines and ex vivo models. Key assessments included cell viability, apoptosis/necrosis induction, and mitochondrial function, aiming to understand the mutation-specific resistance or other cellular response mechanisms. Results: HAMLET and FOLFOX alone decreased viability in CRC explants, irrespective of the BRAF mutation status. Notably, their combination yielded a marked decrease in viability, particularly in the BRAF wild-type samples, suggesting a synergistic effect. While HAMLET showed a modest inhibitory effect on mitochondrial respiration across both mutant and wild-type samples, the response varied depending on the mutation status. Significant differences emerged in the responses of the HT-29 and WiDr cell lines to HAMLET, with WiDr cells showing greater resistance, pointing to factors beyond genetic mutations influencing drug responses. A slight synergy between HAMLET and FOLFOX was observed in WiDr cells, independent of the BRAF mutation. The bioenergetic analysis highlighted differences in mitochondrial respiration between HT-29 and WiDr cells, suggesting that bioenergetic profiles could be key in determining cellular responses to HAMLET. Conclusions: We highlight the potential of HAMLET and FOLFOX as a combined therapeutic approach in BRAF wild-type CRC, significantly reducing cancer cell viability. The varied responses in CRC cell lines, especially regarding bioenergetic and mitochondrial factors, emphasize the need for a comprehensive approach considering both genetic and metabolic aspects in CRC treatment strategies.


Assuntos
Neoplasias Colorretais , Proteínas Proto-Oncogênicas B-raf , Humanos , Sobrevivência Celular , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Células HT29 , Dinâmica Mitocondrial , Proteínas Proto-Oncogênicas B-raf/genética
2.
J Cancer Res Clin Oncol ; 149(11): 8619-8630, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37099199

RESUMO

PURPOSE: Treatment of advanced colorectal cancer (CRC) depends on the correct selection of personalized strategies. HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) is a natural proteolipid milk compound that might serve as a novel cancer prevention and therapy candidate. Our purpose was to investigate HAMLET effect on viability, death pathway and mitochondrial bioenergetics of CRC cells with different KRAS/BRAF mutational status in vitro. METHODS: We treated three cell lines (Caco-2, LoVo, WiDr) with HAMLET to evaluate cell metabolic activity and viability, flow cytometry of apoptotic and necrotic cells, pro- and anti-apoptotic genes, and protein expressions. Mitochondrial respiration (oxygen consumption) rate was recorded by high-resolution respirometry system Oxygraph-2 k. RESULTS: The HAMLET complex was cytotoxic to all investigated CRC cell lines and this effect is irreversible. Flow cytometry revealed that HAMLET induces necrotic cell death with a slight increase in an apoptotic cell population. WiDr cell metabolism, clonogenicity, necrosis/apoptosis level, and mitochondrial respiration were affected significantly less than other cells. CONCLUSION: HAMLET exhibits irreversible cytotoxicity on human CRC cells in a dose-dependent manner, leading to necrotic cell death and inhibiting the extrinsic apoptosis pathway. BRAF-mutant cell line is more resistant than other type lines. HAMLET decreased mitochondrial respiration and ATP synthesis in CaCo-2 and LoVo cell lines but did not affect WiDr cells' respiration. Pretreatment of cancer cells with HAMLET has no impact on mitochondrial outer and inner membrane permeability.


Assuntos
Neoplasias Colorretais , Proteínas Proto-Oncogênicas B-raf , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Células CACO-2 , Morte Celular , Apoptose , Neoplasias Colorretais/patologia , Mutação , Respiração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...