Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cryst Growth Des ; 21(10): 5880-5888, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34650340

RESUMO

In the present work, crystallization of a soluble nucleator N, N', N″-tricyclohexyl-1,3,5-benzenetricarboxylamide (TMC-328) in a poly(l-lactic acid) (PLLA) matrix has been studied at different temperatures. Based on the change in solubility with temperature, different levels of supersaturation of TMC-328 in a PLLA matrix can be obtained. This nucleator presents a fibrous structure produced via self-assembling and develops into an interconnected network when the temperature is lowered. The TMC-328 crystal nuclei density is quantified via optical microscopy, using the average distance of the adjacent fibrillar structure, which shows a steady decrease with the decrease in temperature. The crystallization rates of TMC-328 were assessed through rheological measurements of network formation. Both fibrils' density and crystallization kinetics display a power law dependence on supersaturation. For the first time, the solid-melt interfacial energy, the size of the critical nucleus, and the number of molecules making up the critical nucleus of the nucleator TMC-328 in the PLLA matrix have been determined by adopting the classical nucleation theory. The subsequent crystallization of PLLA induced by this nucleator was investigated as a function of the fibrils' spatial density. The crystallization rate of PLLA is enhanced with the increase in the TMC-328 fibrils' density because of the availability of a larger nucleating surface. The self-assembled fibril of TMC-328 can serve as shish to form a hybrid shish-kebab structure after the crystallization of PLLA, regardless of the number of nucleation sites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...