Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 16(6)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37375755

RESUMO

Cardiovascular diseases (CVDs) represent a broad spectrum of diseases afflicting the heart and blood vessels and remain a major cause of death and disability worldwide. CVD progression is strongly associated with risk factors, including hypertension, hyperglycemia, dyslipidemia, oxidative stress, inflammation, fibrosis, and apoptosis. These risk factors lead to oxidative damage that results in various cardiovascular complications including endothelial dysfunctions, alterations in vascular integrity, the formation of atherosclerosis, as well as incorrigible cardiac remodeling. The use of conventional pharmacological therapy is one of the current preventive measures to control the development of CVDs. However, as undesirable side effects from drug use have become a recent issue, alternative treatment from natural products is being sought in medicinal plants and is gaining interest. Roselle (Hibiscus sabdariffa Linn.) has been reported to contain various bioactive compounds that exert anti-hyperlipidemia, anti-hyperglycemia, anti-hypertension, antioxidative, anti-inflammation, and anti-fibrosis effects. These properties of roselle, especially from its calyx, have relevance to its therapeutic and cardiovascular protection effects in humans. This review summarizes the findings of recent preclinical and clinical studies on roselle as a prophylactic and therapeutic agent in attenuating cardiovascular risk factors and associated mechanisms.

2.
Pharmaceuticals (Basel) ; 15(11)2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36355516

RESUMO

Cardiovascular disease (CVD) is directly linked to diabetes mellitus (DM), and its morbidity and mortality are rising at an alarming rate. Individuals with DM experience significantly worse clinical outcomes due to heart failure as a CVD consequence than non-diabetic patients. Hyperglycemia is the main culprit that triggers the activation of oxidative damage, inflammation, fibrosis, and apoptosis pathways that aggravate diabetic CVD progression. In recent years, the development of phytochemical-based nutraceutical products for diabetic treatment has risen due to their therapeutic properties. Anthocyanin, which can be found in various types of plants, has been proposed for preventing and treating various diseases, and has elicited excellent antioxidative, anti-inflammation, anti-fibrosis, and anti-apoptosis effects. In preclinical and clinical studies, plants rich in anthocyanin have been reported to attenuate diabetic CVD. Therefore, the development of anthocyanin as a nutraceutical in managing diabetic CVD is in demand. In this review, we unveil the role of anthocyanin in modulating diabetic CVD, and its potential to be developed as a nutraceutical for a therapeutic strategy in managing CVD associated with DM.

3.
Int J Mol Sci ; 23(12)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35742837

RESUMO

Diabetes-induced vascular disorder is considered one of the deadly risk factors among diabetic patients that are caused by persistent hyperglycemia that eventually leads to cardiovascular diseases. Elevated reactive oxygen species (ROS) due to high blood glucose levels activate signaling pathways such as AGE/RAGE, PKC, polyol, and hexosamine pathways. The activated signaling pathway triggers oxidative stress, inflammation, and apoptosis which later lead to vascular dysfunction induced by diabetes. Polyphenol is a bioactive compound that can be found abundantly in plants such as vegetables, fruits, whole grains, and nuts. This compound exerts therapeutic effects in alleviating diabetes-induced vascular disorder, mainly due to its potential as an anti-oxidative, anti-inflammatory, and anti-apoptotic agent. In this review, we sought to summarize the recent discovery of polyphenol treatments in modulating associated genes involved in the progression of diabetes-induced vascular disorder.


Assuntos
Diabetes Mellitus , Angiopatias Diabéticas , Hiperglicemia , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/genética , Humanos , Estresse Oxidativo , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-34802412

RESUMO

Diabetic Nephropathy (DN) is known as one of the driving sources of End-Stage Renal Disease (ESRD). DN prevalence continues to increase in every corner of the world andthat has been a major concern to healthcare professionals as DN is the key driver of Diabetes Mellitus (DM) morbidity and mortality. Hyperglycaemia is closely connected with the production of Reactive Oxygen Species (ROS) that cause oxidative stress response as well as numerous cellular and molecular modifications. Oxidative stress is a significant causative factor to renal damage, as it can activate other immunological pathways, such as inflammatory, fibrosis, and apoptosis pathways. These pathways can lead to cellular impairment and death as well as cellular senescence. Natural substances containing bioactive compounds, such as polyphenols, have been reported to exert valuable effects on various pathological conditions, including DM. The role of polyphenols in alleviating DN conditions has been documented in many studies. In this review, the potential of polyphenols in ameliorating the progression of DN via modulation of oxidative stress, inflammation, fibrosis, and apoptosis, as well as cellular senescence, has been addressed. This information may be used as the strategies for the management of DN and development as nutraceutical products to overcome DN development.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Apoptose , Nefropatias Diabéticas/etiologia , Fibrose , Humanos , Inflamação/complicações , Inflamação/tratamento farmacológico , Estresse Oxidativo , Polifenóis/farmacologia , Polifenóis/uso terapêutico
5.
Int J Mol Sci ; 22(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34769045

RESUMO

Diabetes cardiomyopathy is one of the key factors of mortality among diabetic patients around the globe. One of the prior contributors to the progression of diabetic cardiomyopathy is cardiac mitochondrial dysfunction. The cardiac mitochondrial dysfunction can induce oxidative stress in cardiomyocytes and was found to be the cause of majority of the heart morphological and dynamical changes in diabetic cardiomyopathy. To slow down the occurrence of diabetic cardiomyopathy, it is crucial to discover therapeutic agents that target mitochondrial-induced oxidative stress. Flavonoid is a plentiful phytochemical in plants that shows a wide range of biological actions against human diseases. Flavonoids have been extensively documented for their ability to protect the heart from diabetic cardiomyopathy. Flavonoids' ability to alleviate diabetic cardiomyopathy is primarily attributed to their antioxidant properties. In this review, we present the mechanisms involved in flavonoid therapies in ameliorating mitochondrial-induced oxidative stress in diabetic cardiomyopathy.


Assuntos
Cardiomiopatias Diabéticas/tratamento farmacológico , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Humanos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...