Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 62017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-29106375

RESUMO

Sleep is an essential and phylogenetically conserved behavioral state, but it remains unclear to what extent genes identified in invertebrates also regulate vertebrate sleep. RFamide-related neuropeptides have been shown to promote invertebrate sleep, and here we report that the vertebrate hypothalamic RFamide neuropeptide VF (NPVF) regulates sleep in the zebrafish, a diurnal vertebrate. We found that NPVF signaling and npvf-expressing neurons are both necessary and sufficient to promote sleep, that mature peptides derived from the NPVF preproprotein promote sleep in a synergistic manner, and that stimulation of npvf-expressing neurons induces neuronal activity levels consistent with normal sleep. These results identify NPVF signaling and npvf-expressing neurons as a novel vertebrate sleep-promoting system and suggest that RFamide neuropeptides participate in an ancient and central aspect of sleep control.


Assuntos
Regulação da Expressão Gênica , Neuropeptídeos/metabolismo , Sono , Animais , Neurônios/fisiologia , Transdução de Sinais , Peixe-Zebra
2.
Neuron ; 89(4): 842-56, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26889812

RESUMO

Neuromodulation of arousal states ensures that an animal appropriately responds to its environment and engages in behaviors necessary for survival. However, the molecular and circuit properties underlying neuromodulation of arousal states such as sleep and wakefulness remain unclear. To tackle this challenge in a systematic and unbiased manner, we performed a genetic overexpression screen to identify genes that affect larval zebrafish arousal. We found that the neuropeptide neuromedin U (Nmu) promotes hyperactivity and inhibits sleep in zebrafish larvae, whereas nmu mutant animals are hypoactive. We show that Nmu-induced arousal requires Nmu receptor 2 and signaling via corticotropin releasing hormone (Crh) receptor 1. In contrast to previously proposed models, we find that Nmu does not promote arousal via the hypothalamic-pituitary-adrenal axis, but rather probably acts via brainstem crh-expressing neurons. These results reveal an unexpected functional and anatomical interface between the Nmu system and brainstem arousal systems that represents a novel wake-promoting pathway.


Assuntos
Regulação da Expressão Gênica/genética , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Sono/genética , Vigília/genética , Fatores Etários , Compostos de Anilina/farmacologia , Animais , Tronco Encefálico/citologia , Tronco Encefálico/crescimento & desenvolvimento , Tronco Encefálico/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Larva , Camundongos Transgênicos , Atividade Motora/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Pirimidinas/farmacologia , Receptores de Complemento 3b/metabolismo , Receptores de Neurotransmissores/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
3.
Curr Biol ; 20(11): 969-78, 2010 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-20493701

RESUMO

BACKGROUND: Total food intake is a function of meal size and meal frequency, and adjustments to these parameters allow animals to maintain a stable energy balance in changing environmental conditions. The physiological mechanisms that regulate meal size have been studied in blowflies but have not been previously examined in Drosophila. RESULTS: Here we show that mutations in the leucokinin neuropeptide (leuc) and leucokinin receptor (lkr) genes cause phenotypes in which Drosophila adults have an increase in meal size and a compensatory reduction in meal frequency. Because mutant flies take larger but fewer meals, their caloric intake is the same as that of wild-type flies. The expression patterns of the leuc and lkr genes identify small groups of brain neurons that regulate this behavior. Leuc-containing presynaptic terminals are found close to Lkr neurons in the brain and ventral ganglia, suggesting that they deliver Leuc peptide to these neurons. Lkr neurons innervate the foregut. Flies in which Leuc or Lkr neurons are ablated have defects identical to those of leucokinin pathway mutants. CONCLUSIONS: Our data suggest that the increase in meal size in leuc and lkr mutants is due to a meal termination defect, perhaps arising from impaired communication of gut distension signals to the brain. Leucokinin and the leucokinin receptor are homologous to vertebrate tachykinin and its receptor, and injection of tachykinins reduces food consumption. Our results suggest that the roles of the tachykinin system in regulating food intake might be evolutionarily conserved between insects and vertebrates.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Ingestão de Alimentos/fisiologia , Comportamento Alimentar/fisiologia , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomia & histologia , Expressão Gênica , Masculino , Mutação , Neurônios/citologia , Neuropeptídeos/genética , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
4.
Neuron ; 63(3): 329-41, 2009 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-19679073

RESUMO

In mammals, fat store levels are communicated by leptin and insulin signaling to brain centers that regulate food intake and metabolism. By using transgenic manipulation of neural activity, we report the isolation of two distinct neuronal populations in flies that perform a similar function, the c673a-Gal4 and fruitless-Gal4 neurons. When either of these neuronal groups is silenced, fat store levels increase. This change is mediated through an increase in food intake and altered metabolism in c673a-Gal4-silenced flies, while silencing fruitless-Gal4 neurons alters only metabolism. Hyperactivation of either neuronal group causes depletion of fat stores by increasing metabolic rate and decreasing fatty acid synthesis. Altering the activities of these neurons causes changes in expression of genes known to regulate fat utilization. Our results show that the fly brain measures fat store levels and can induce changes in food intake and metabolism to maintain them within normal limits.


Assuntos
Encéfalo/patologia , Drosophila/fisiologia , Neurônios/classificação , Neurônios/metabolismo , Obesidade/patologia , Trifosfato de Adenosina/metabolismo , Animais , Animais Geneticamente Modificados , Metabolismo dos Carboidratos/genética , Dióxido de Carbono/metabolismo , Cromatografia em Camada Fina/métodos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ingestão de Alimentos/genética , Metabolismo Energético/genética , Gorduras/metabolismo , Proteínas de Fluorescência Verde/genética , Masculino , Espectrometria de Massas , Mutação/genética , Obesidade/genética , Obesidade/metabolismo , Transdução de Sinais/genética
5.
Curr Biol ; 14(10): 885-90, 2004 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-15186745

RESUMO

In many species, reducing nutrient intake without causing malnutrition extends lifespan. Like DR (dietary restriction), modulation of genes in the insulin-signaling pathway, known to alter nutrient sensing, has been shown to extend lifespan in various species. In Drosophila, the target of rapamycin (TOR) and the insulin pathways have emerged as major regulators of growth and size. Hence we examined the role of TOR pathway genes in regulating lifespan by using Drosophila. We show that inhibition of TOR signaling pathway by alteration of the expression of genes in this nutrient-sensing pathway, which is conserved from yeast to human, extends lifespan in a manner that may overlap with known effects of dietary restriction on longevity. In Drosophila, TSC1 and TSC2 (tuberous sclerosis complex genes 1 and 2) act together to inhibit TOR (target of rapamycin), which mediates a signaling pathway that couples amino acid availability to S6 kinase, translation initiation, and growth. We find that overexpression of dTsc1, dTsc2, or dominant-negative forms of dTOR or dS6K all cause lifespan extension. Modulation of expression in the fat is sufficient for the lifespan-extension effects. The lifespan extensions are dependent on nutritional condition, suggesting a possible link between the TOR pathway and dietary restriction.


Assuntos
Tecido Adiposo/metabolismo , Proteínas de Drosophila/fisiologia , Regulação da Expressão Gênica , Longevidade/genética , Fosfatidilinositol 3-Quinases/fisiologia , Transdução de Sinais/genética , Animais , Drosophila , Proteínas de Drosophila/metabolismo , Ingestão de Alimentos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Quinases , Proteínas/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Serina-Treonina Quinases TOR , Fatores de Tempo , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...