Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Biotechnol ; 41(7): 958-967, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36593415

RESUMO

Generation of stable gene-edited plant lines using clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) requires a lengthy process of outcrossing to eliminate CRISPR-Cas9-associated sequences and produce transgene-free lines. We have addressed this issue by designing fusions of Cas9 and guide RNA transcripts to tRNA-like sequence motifs that move RNAs from transgenic rootstocks to grafted wild-type shoots (scions) and achieve heritable gene editing, as demonstrated in wild-type Arabidopsis thaliana and Brassica rapa. The graft-mobile gene editing system enables the production of transgene-free offspring in one generation without the need for transgene elimination, culture recovery and selection, or use of viral editing vectors. We anticipate that using graft-mobile editing systems for transgene-free plant production may be applied to a wide range of breeding programs and crop plants.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , Melhoramento Vegetal , Plantas Geneticamente Modificadas/genética , Transgenes/genética
2.
J Vis Exp ; (159)2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32478728

RESUMO

Secondary base modifications on RNA, such as m5C, affect the structure and function of the modified RNA molecules. Methylated RNA Immunoprecipitation and sequencing (MeRIP-seq) is a method that aims to enrich for methylated RNA and ultimately identify modified transcripts. Briefly, sonicated RNA is incubated with an antibody for 5-methylated cytosines and precipitated with the assistance of protein G beads. The enriched fragments are then sequenced and the potential methylation sites are mapped based on the distribution of the reads and peak detection. MeRIP can be applied to any organism, as it does not require any prior sequence or modifying enzyme knowledge. In addition, besides fragmentation, RNA is not subjected to any other chemical or temperature treatment. However, MeRIP-seq does not provide single-nucleotide prediction of the methylation site as other methods do, although the methylated area can be narrowed down to a few nucleotides. The use of different modification-specific antibodies allows MeRIP to be adjusted for the different base modifications present on RNA, expanding the possible applications of this method.


Assuntos
5-Metilcitosina/metabolismo , Arabidopsis/metabolismo , Imunoprecipitação/métodos , RNA de Plantas/metabolismo , Arabidopsis/genética , Sequência de Bases , Metilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , Análise de Sequência de RNA/métodos , Transcrição Gênica
3.
Curr Biol ; 29(15): 2465-2476.e5, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31327714

RESUMO

In plants, transcripts move to distant body parts to potentially act as systemic signals regulating development and growth. Thousands of messenger RNAs (mRNAs) are transported across graft junctions via the phloem to distinct plant parts. Little is known regarding features, structural motifs, and potential base modifications of transported transcripts and how these may affect their mobility. We identified Arabidopsis thaliana mRNAs harboring the modified base 5-methylcytosine (m5C) and found that these are significantly enriched in mRNAs previously described as mobile, moving over graft junctions to distinct plant parts. We confirm this finding with graft-mobile methylated mRNAs TRANSLATIONALLY CONTROLLED TUMOR PROTEIN 1 (TCTP1) and HEAT SHOCK COGNATE PROTEIN 70.1 (HSC70.1), whose mRNA transport is diminished in mutants deficient in m5C mRNA methylation. Together, our results point toward an essential role of cytosine methylation in systemic mRNA mobility in plants and that TCTP1 mRNA mobility is required for its signaling function.


Assuntos
5-Metilcitosina/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas Associadas aos Microtúbulos/genética , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Proteínas de Choque Térmico HSP70/metabolismo , Metilação , Proteínas Associadas aos Microtúbulos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...