Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 109(2-1): 024219, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38491674

RESUMO

Various physical systems relax mechanical frustration through configurational rearrangements. We examine such rearrangements via Hamiltonian dynamics of simple internally stressed harmonic four-mass systems. We demonstrate theoretically and numerically how mechanical frustration controls the underlying potential energy landscape. Then, we examine the harmonic four-mass systems' Hamiltonian dynamics and relate the onset of chaotic motion to self-driven rearrangements. We show such configurational dynamics may occur without strong precursors, rendering such dynamics seemingly spontaneous.

2.
Phys Rev E ; 101(3-1): 032211, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32289910

RESUMO

The symmetric harmonic three-mass system with finite rest lengths, despite its apparent simplicity, displays a wide array of interesting dynamics for different energy values. At low energy the system shows regular behavior that produces a deformation-induced rotation with a constant averaged angular velocity. As the energy is increased this behavior makes way to a chaotic regime with rotational behavior statistically resembling Lévy walks and random walks. At high enough energies, where the rest lengths become negligible, the chaotic signature vanishes and the system returns to regularity, with a single dominant frequency. The transition to and from chaos, as well as the anomalous power-law statistics measured for the angular displacement of the harmonic three-mass system are largely governed by the structure of regular solutions of this mixed Hamiltonian system. Thus, a deeper understating of the system's irregular behavior requires mapping out its regular solutions. In this work we provide a comprehensive analysis of the system's regular regimes of motion, using perturbative methods to derive analytical expressions of the system as almost-integrable in its low- and high-energy extremes. The compatibility of this description with the full system is shown numerically. In the low-energy regime, the Birkhoff normal form method is utilized to circumvent the low-order 1:1 resonance of the system, and the conditions for Kolmogorov-Arnold-Moser theory are shown to hold. The integrable approximations provide the back-bone structure around which the behavior of the full nonlinear system is organized and provide a pathway to understanding the origin of the power-law statistics measured in the system.

3.
Phys Rev Lett ; 122(2): 024102, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30720293

RESUMO

In flat space, changing a system's velocity requires the presence of an external force. However, an isolated nonrigid system can freely change its orientation due to the nonholonomic nature of the angular momentum conservation law. Such nonrigid isolated systems may thus manifest their internal dynamics as rotations. In this work, we show that for such systems chaotic internal dynamics may lead to macroscopic rotational random walk resembling thermally induced motion. We do so by studying the classical harmonic three-mass system in the strongly nonlinear regime, the simplest physical model capable of zero angular momentum rotation as well as chaotic dynamics. At low energies, the dynamics are regular and the system rotates at a constant rate with zero angular momentum. For sufficiently high energies a rotational random walk is observed. For intermediate energies the system performs ballistic bouts of constant rotation rates interrupted by unpredictable orientation reversal events, and the system constitutes a simple physical model for Lévy walks. The orientation reversal statistics in this regime lead to a fractional rotational diffusion that interpolates smoothly between the ballistic and regular diffusive regimes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...