Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 291(5504): 657-61, 2001 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-11158678

RESUMO

Although astrocytes constitute nearly half of the cells in our brain, their function is a long-standing neurobiological mystery. Here we show by quantal analyses, FM1-43 imaging, immunostaining, and electron microscopy that few synapses form in the absence of glial cells and that the few synapses that do form are functionally immature. Astrocytes increase the number of mature, functional synapses on central nervous system (CNS) neurons by sevenfold and are required for synaptic maintenance in vitro. We also show that most synapses are generated concurrently with the development of glia in vivo. These data demonstrate a previously unknown function for glia in inducing and stabilizing CNS synapses, show that CNS synapse number can be profoundly regulated by nonneuronal signals, and raise the possibility that glia may actively participate in synaptic plasticity.


Assuntos
Astrócitos/fisiologia , Proteínas de Ligação ao Cálcio , Células Ganglionares da Retina/fisiologia , Sinapses/fisiologia , Animais , Cálcio/metabolismo , Comunicação Celular , Células Cultivadas , Técnicas de Cocultura , Potenciais Pós-Sinápticos Excitadores , Corantes Fluorescentes/metabolismo , Ácido Glutâmico/farmacologia , Ionomicina/farmacologia , Glicoproteínas de Membrana/metabolismo , Microscopia Eletrônica , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal , Técnicas de Patch-Clamp , Compostos de Piridínio/metabolismo , Compostos de Amônio Quaternário/metabolismo , Ratos , Ratos Sprague-Dawley , Células Ganglionares da Retina/ultraestrutura , Colículos Superiores/embriologia , Colículos Superiores/crescimento & desenvolvimento , Colículos Superiores/ultraestrutura , Sinapses/ultraestrutura , Transmissão Sináptica , Vesículas Sinápticas/metabolismo , Sinaptofisina/metabolismo , Sinaptotagminas
2.
J Cell Biol ; 147(4): 729-42, 1999 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-10562277

RESUMO

A screen for mutants of Saccharomyces cerevisiae secretory pathway components previously yielded sec34, a mutant that accumulates numerous vesicles and fails to transport proteins from the ER to the Golgi complex at the restrictive temperature (Wuestehube, L.J., R. Duden, A. Eun, S. Hamamoto, P. Korn, R. Ram, and R. Schekman. 1996. Genetics. 142:393-406). We find that SEC34 encodes a novel protein of 93-kD, peripherally associated with membranes. The temperature-sensitive phenotype of sec34-2 is suppressed by the rab GTPase Ypt1p that functions early in the secretory pathway, or by the dominant form of the ER to Golgi complex target-SNARE (soluble N-ethylmaleimide sensitive fusion protein attachment protein receptor)-associated protein Sly1p, Sly1-20p. Weaker suppression is evident upon overexpression of genes encoding the vesicle tethering factor Uso1p or the vesicle-SNAREs Sec22p, Bet1p, or Ykt6p. This genetic suppression profile is similar to that of sec35-1, a mutant allele of a gene encoding an ER to Golgi vesicle tethering factor and, like Sec35p, Sec34p is required in vitro for vesicle tethering. sec34-2 and sec35-1 display a synthetic lethal interaction, a genetic result explained by the finding that Sec34p and Sec35p can interact by two-hybrid analysis. Fractionation of yeast cytosol indicates that Sec34p and Sec35p exist in an approximately 750-kD protein complex. Finally, we describe RUD3, a novel gene identified through a genetic screen for multicopy suppressors of a mutation in USO1, which suppresses the sec34-2 mutation as well.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Complexo de Golgi/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiologia , Proteínas de Transporte Vesicular , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Transporte/isolamento & purificação , Fracionamento Celular , Clonagem Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Deleção de Genes , Genótipo , Complexo de Golgi/genética , Complexo de Golgi/ultraestrutura , Proteínas de Membrana/isolamento & purificação , Dados de Sequência Molecular , Plasmídeos , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Mapeamento por Restrição , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura
3.
J Cell Biol ; 136(2): 251-69, 1997 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-9015298

RESUMO

The Saccharomyces cerevisiae mating pheromone a-factor is a prenylated and carboxyl methylated extracellular peptide signaling molecule. Biogenesis of the a-factor precursor proceeds via a distinctive multistep pathway that involves COOH-terminal modification. NH2-terminal proteolysis, and a nonclassical export mechanism. In this study, we examine the formation and fate of a-factor biosynthetic intermediates to more precisely define the events that occur during a-factor biogenesis. We have identified four distinct a-factor biosynthetic intermediates (P0, P1, P2, and M) by metabolic labeling, immunoprecipitation, and SDS-PAGE. We determined the biochemical composition of each by defining their NH2-terminal amino acid and COOH-terminal modification status. Unexpectedly, we discovered that not one, but two NH2-terminal cleavage steps occur during the biogenesis of a-factor. In addition, we have shown that COOH-terminal prenylation is required for the NH2-terminal processing of a-factor and that all the prenylated a-factor intermediates (P1, P2, and M) are membrane bound, suggesting that many steps of a-factor biogenesis occur in association with membranes. We also observed that although the biogenesis of a-factor is a rapid process, it is inherently inefficient, perhaps reflecting the potential for regulation. Previous studies have identified gene products that participate in the COOH-terminal modification (Ram1p, Ram2p, Ste14p), NH2-terminal processing (Ste24p, Axl1p), and export (Ste6p) of a-factor. The intermediates defined in the present study are discussed in the context of these biogenesis components to formulate an overall model for the pathway of a-factor biogenesis.


Assuntos
Lipoproteínas/metabolismo , Feromônios/metabolismo , Precursores de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Transporte Biológico , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Cinética , Lipoproteínas/biossíntese , Lipoproteínas/química , Metilação , Dados de Sequência Molecular , Feromônios/biossíntese , Feromônios/química , Precursores de Proteínas/biossíntese , Precursores de Proteínas/química , Prenilação de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae , Especificidade da Espécie
4.
J Cell Biol ; 132(5): 755-67, 1996 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-8603910

RESUMO

Uso1p, a Saccharomyces cerevisiae protein required for ER to Golgi transport, is homologous to the mammalian intra-Golgi transport factor p115. We have used genetic and biochemical approaches to examine the function of Uso1p. The temperature-sensitive phenotype of the uso1-1 mutant can be suppressed by overexpression of each of the known ER to Golgi v-SNAREs (Bet1p, Bos1p, Sec22p, and Ykt6p). Overexpression of two of them, BET1p and Sec22p, can also suppress the lethality of delta uso1, indicating that the SNAREs function downstream of Uso1p. In addition, overexpression of the small GTP-binding protein Ypt1p, or of a gain if function mutant (SLY1-20) of the t-SNARE associated protein Sly1p, also confers temperature resistance. Uso1p and Ypt1p appear to function in the same process because they have a similar set of genetic interactions with the v-SNARE genes, they exhibit a synthetic lethal interaction, and they are able to suppress temperature sensitive mutants of one another when overexpressed. Uso1p acts upstream of, or in conjunction with, Ypt1p because overexpression of Ypt1p allows a delta uso1 strain to grow, whereas overexpression of Uso1p does not suppress a delta ypt1 strain. Finally, biochemical analysis indicates that Uso1p, like Ypt1p, is required for assembly of the v-SNARE/t-SNARE complex. The implications of these findings, with respect to the mechanism of vesicle docking, are discussed.


Assuntos
Proteínas de Transporte , Retículo Endoplasmático/metabolismo , Proteínas Fúngicas/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular , Proteínas rab de Ligação ao GTP , Sequência de Bases , Transporte Biológico , Proteínas Fúngicas/genética , GTP Fosfo-Hidrolases/genética , Proteínas de Ligação ao GTP/genética , Substâncias Macromoleculares , Proteínas de Membrana/genética , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Ligação Proteica , Proteínas SNARE , Saccharomyces cerevisiae/genética , Deleção de Sequência , Supressão Genética
5.
Proc Natl Acad Sci U S A ; 92(2): 522-6, 1995 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-7831323

RESUMO

A recently discovered vesicular transport factor, termed p115, is required along with N-ethylmaleimide-sensitive fusion protein (NSF) and soluble NSF attachment proteins for in vitro Golgi transport. p115 is a peripheral membrane protein found predominantly on the Golgi. Biochemical and electron microscopic analyses indicate that p115 is an elongated homodimer with two globular "heads" and an extended "tail" reminiscent of myosin II. We have cloned and sequenced cDNAs for bovine and rat p115. The predicted translation products are 90% identical, and each can be divided into three domains. The predicted 108-kDa bovine protein consists of an N-terminal 73-kDa globular domain followed by a 29-kDa coiled-coil dimerization domain, a linker segment of 4 kDa, and a highly acidic domain of 3 kDa. p115 is related to Uso1p, a protein required for endoplasmic reticulum to Golgi vesicular transport in Saccharomyces cerevisiae, which has a similar "head-coil-acid" domain structure. The p115 and Uso1p heads are similar in size, have approximately 25% sequence identity, and possess two highly homologous regions (62% and 60% identity over 34 and 53 residues, respectively). There is a third region of homology (50% identity over 28 residues) between the coiled-coil and acidic domains. Although the acidic nature of the p115 and Uso1p C termini is conserved, the primary sequence is not. We discuss these results in light of the proposed function of p115 in membrane targeting and/or fusion.


Assuntos
Proteínas de Transporte/genética , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Membrana/genética , Proteínas de Saccharomyces cerevisiae , Proteínas de Transporte Vesicular , Sequência de Aminoácidos , Animais , Transporte Biológico , Proteínas de Transporte/ultraestrutura , Bovinos , Clonagem Molecular , DNA Complementar/genética , Proteínas Fúngicas/genética , Proteínas da Matriz do Complexo de Golgi , Proteínas de Membrana/ultraestrutura , Dados de Sequência Molecular , Conformação Proteica , Ratos , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
6.
EMBO J ; 10(7): 1699-709, 1991 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-2050108

RESUMO

Post-translational processing of a distinct group of proteins and polypeptides, including the a-factor mating pheromone and RAS proteins of Saccharomyces cerevisiae, results in the formation of a modified C-terminal cysteine that is S-isoprenylated and alpha-methyl esterified. We have shown previously that a membrane-associated enzymatic activity in yeast can mediate in vitro methylation of an isoprenylated peptide substrate and that this methyltransferase activity is absent in ste14 mutants. We demonstrate here that STE14 is the structural gene for this enzyme by expression of its product as a fusion protein in Escherichia coli, an organism in which this activity is lacking. We also show that a-factor, RAS1 and RAS2 are physiological methyl-accepting substrates for this enzyme by demonstrating that these proteins are not methylated in a ste14 null mutant. It is notable that cells lacking STE14 methyltransferase activity exhibit no detectable impairment of RAS function or cell viability. However, we did observe a kinetic delay in the rate of RAS2 maturation and a slight decrease in the amount of membrane localized RAS2. Thus, methylation does not appear to be essential for RAS2 maturation or localization, but the lack of methylation can have subtle effects on the efficiency of these processes.


Assuntos
Proteínas Fúngicas/genética , Genes Fúngicos , Peptídeos/genética , Feromônios/genética , Proteínas Metiltransferases/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Proteínas ras , Sequência de Aminoácidos , Membrana Celular/metabolismo , Escherichia coli/genética , Proteínas Fúngicas/metabolismo , Cinética , Fator de Acasalamento , Metilação , Dados de Sequência Molecular , Mutação , Saccharomyces cerevisiae/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...