Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
2.
J Clin Invest ; 133(13)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37219943

RESUMO

Recent transcriptomic-based analysis of diffuse large B cell lymphoma (DLBCL) has highlighted the clinical relevance of LN fibroblast and tumor-infiltrating lymphocyte (TIL) signatures within the tumor microenvironment (TME). However, the immunomodulatory role of fibroblasts in lymphoma remains unclear. Here, by studying human and mouse DLBCL-LNs, we identified the presence of an aberrantly remodeled fibroblastic reticular cell (FRC) network expressing elevated fibroblast-activated protein (FAP). RNA-Seq analyses revealed that exposure to DLBCL reprogrammed key immunoregulatory pathways in FRCs, including a switch from homeostatic to inflammatory chemokine expression and elevated antigen-presentation molecules. Functional assays showed that DLBCL-activated FRCs (DLBCL-FRCs) hindered optimal TIL and chimeric antigen receptor (CAR) T cell migration. Moreover, DLBCL-FRCs inhibited CD8+ TIL cytotoxicity in an antigen-specific manner. Notably, the interrogation of patient LNs with imaging mass cytometry identified distinct environments differing in their CD8+ TIL-FRC composition and spatial organization that associated with survival outcomes. We further demonstrated the potential to target inhibitory FRCs to rejuvenate interacting TILs. Cotreating organotypic cultures with FAP-targeted immunostimulatory drugs and a bispecific antibody (glofitamab) augmented antilymphoma TIL cytotoxicity. Our study reveals an immunosuppressive role of FRCs in DLBCL, with implications for immune evasion, disease pathogenesis, and optimizing immunotherapy for patients.


Assuntos
Linfoma Difuso de Grandes Células B , Linfócitos T , Humanos , Camundongos , Animais , Linfoma Difuso de Grandes Células B/patologia , Fibroblastos/metabolismo , Linfonodos , Microambiente Tumoral
3.
Transl Psychiatry ; 13(1): 108, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37012252

RESUMO

Very preterm birth (VPT; ≤32 weeks' gestation) is associated with altered brain development and cognitive and behavioral difficulties across the lifespan. However, heterogeneity in outcomes among individuals born VPT makes it challenging to identify those most vulnerable to neurodevelopmental sequelae. Here, we aimed to stratify VPT children into distinct behavioral subgroups and explore between-subgroup differences in neonatal brain structure and function. 198 VPT children (98 females) previously enrolled in the Evaluation of Preterm Imaging Study (EudraCT 2009-011602-42) underwent Magnetic Resonance Imaging at term-equivalent age and neuropsychological assessments at 4-7 years. Using an integrative clustering approach, we combined neonatal socio-demographic, clinical factors and childhood socio-emotional and executive function outcomes, to identify distinct subgroups of children based on their similarity profiles in a multidimensional space. We characterized resultant subgroups using domain-specific outcomes (temperament, psychopathology, IQ and cognitively stimulating home environment) and explored between-subgroup differences in neonatal brain volumes (voxel-wise Tensor-Based-Morphometry), functional connectivity (voxel-wise degree centrality) and structural connectivity (Tract-Based-Spatial-Statistics). Results showed two- and three-cluster data-driven solutions. The two-cluster solution comprised a 'resilient' subgroup (lower psychopathology and higher IQ, executive function and socio-emotional scores) and an 'at-risk' subgroup (poorer behavioral and cognitive outcomes). No neuroimaging differences between the resilient and at-risk subgroups were found. The three-cluster solution showed an additional third 'intermediate' subgroup, displaying behavioral and cognitive outcomes intermediate between the resilient and at-risk subgroups. The resilient subgroup had the most cognitively stimulating home environment and the at-risk subgroup showed the highest neonatal clinical risk, while the intermediate subgroup showed the lowest clinical, but the highest socio-demographic risk. Compared to the intermediate subgroup, the resilient subgroup displayed larger neonatal insular and orbitofrontal volumes and stronger orbitofrontal functional connectivity, while the at-risk group showed widespread white matter microstructural alterations. These findings suggest that risk stratification following VPT birth is feasible and could be used translationally to guide personalized interventions aimed at promoting children's resilience.


Assuntos
Lactente Extremamente Prematuro , Nascimento Prematuro , Feminino , Humanos , Recém-Nascido , Criança , Nascimento Prematuro/diagnóstico por imagem , Nascimento Prematuro/patologia , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Idade Gestacional
4.
Nat Commun ; 13(1): 5820, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192482

RESUMO

The function of interleukin-22 (IL-22) in intestinal barrier homeostasis remains controversial. Here, we map the transcriptional landscape regulated by IL-22 in human colonic epithelial organoids and evaluate the biological, functional and clinical significance of the IL-22 mediated pathways in ulcerative colitis (UC). We show that IL-22 regulated pro-inflammatory pathways are involved in microbial recognition, cancer and immune cell chemotaxis; most prominently those involving CXCR2+ neutrophils. IL-22-mediated transcriptional regulation of CXC-family neutrophil-active chemokine expression is highly conserved across species, is dependent on STAT3 signaling, and is functionally and pathologically important in the recruitment of CXCR2+ neutrophils into colonic tissue. In UC patients, the magnitude of enrichment of the IL-22 regulated transcripts in colonic biopsies correlates with colonic neutrophil infiltration and is enriched in non-responders to ustekinumab therapy. Our data provide further insights into the biology of IL-22 in human disease and highlight its function in the regulation of pathogenic immune pathways, including neutrophil chemotaxis. The transcriptional networks regulated by IL-22 are functionally and clinically important in UC, impacting patient trajectories and responsiveness to biological intervention.


Assuntos
Colite Ulcerativa , Quimiocinas CXC/metabolismo , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/genética , Humanos , Interleucina-8/metabolismo , Interleucinas , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Receptores de Interleucina-8B/metabolismo , Ustekinumab/farmacologia , Ustekinumab/uso terapêutico , Interleucina 22
5.
Cell Rep ; 40(13): 111439, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36170836

RESUMO

Interactions between the epithelium and the immune system are critical in the pathogenesis of inflammatory bowel disease (IBD). In this study, we mapped the transcriptional landscape of human colonic epithelial organoids in response to different cytokines responsible for mediating canonical mucosal immune responses. By profiling the transcriptome of human colonic organoids treated with the canonical cytokines interferon gamma, interleukin-13, -17A, and tumor necrosis factor alpha with next-generation sequencing, we unveil shared and distinct regulation patterns of epithelial function by different cytokines. An integrative analysis of cytokine responses in diseased tissue from patients with IBD (n = 1,009) reveals a molecular classification of mucosal inflammation defined by gradients of cytokine-responsive transcriptional signatures. Our systems biology approach detected signaling bottlenecks in cytokine-responsive networks and highlighted their translational potential as theragnostic targets in intestinal inflammation.


Assuntos
Doenças Inflamatórias Intestinais , Organoides , Colo/patologia , Citocinas , Humanos , Inflamação/patologia , Doenças Inflamatórias Intestinais/patologia , Interferon gama/farmacologia , Interleucina-13 , Mucosa Intestinal/patologia , Organoides/patologia , Fator de Necrose Tumoral alfa
6.
J Intensive Care Soc ; 23(3): 318-324, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36033245

RESUMO

Sepsis is a common illness. Immune responses are considered major drivers of sepsis illness and outcomes. However, there are no proven immunomodulator therapies in sepsis. We hypothesised that in-depth characterisation of sepsis-specific immune trajectory may inform immunomodulation in sepsis-related critical illness. We describe the protocol of the IMMERSE study to address this hypothesis. We include critically ill sepsis patients without documented immune comorbidity and age-sex matched cardiac surgical patients as controls. We plan to perform an in-depth biological characterisation of innate and adaptive immune systems, platelet function, humoral components and transcriptional determinants of the immune system responses in sepsis. This will be done at pre-specified time points during their critical illness to generate an illness trajectory. The sample size for each biological assessment is different and is described in detail. In summary, the overall aim of the IMMERSE study is to increase the granularity of longitudinal immunology model of sepsis to inform future immunomodulation trials.

7.
Front Microbiol ; 13: 904451, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35774454

RESUMO

The cervicovaginal environment in pregnancy is proposed to influence risk of spontaneous preterm birth. The environment is shaped both by the resident microbiota and local inflammation driven by the host response (epithelia, immune cells and mucous). The contributions of the microbiota, metabolome and host defence peptides have been investigated, but less is known about the immune cell populations and how they may respond to the vaginal environment. Here we investigated the maternal immune cell populations at the cervicovaginal interface in early to mid-pregnancy (10-24 weeks of gestation, samples from N = 46 women), we confirmed neutrophils as the predominant cell type and characterised associations between the cervical neutrophil transcriptome and the cervicovaginal metagenome (N = 9 women). In this exploratory study, the neutrophil cell proportion was affected by gestation at sampling but not by birth outcome or ethnicity. Following RNA sequencing (RNA-seq) of a subset of neutrophil enriched cells, principal component analysis of the transcriptome profiles indicated that cells from seven women clustered closely together these women had a less diverse cervicovaginal microbiota than the remaining three women. Expression of genes involved in neutrophil mediated immunity, activation, degranulation, and other immune functions correlated negatively with Gardnerella vaginalis abundance and positively with Lactobacillus iners abundance; microbes previously associated with birth outcome. The finding that neutrophils are the dominant immune cell type in the cervix during pregnancy and that the cervical neutrophil transcriptome of pregnant women may be modified in response to the microbial cervicovaginal environment, or vice versa, establishes the rationale for investigating associations between the innate immune response, cervical shortening and spontaneous preterm birth and the underlying mechanisms.

9.
Nat Commun ; 12(1): 3406, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099652

RESUMO

Prognostic characteristics inform risk stratification in intensive care unit (ICU) patients with coronavirus disease 2019 (COVID-19). We obtained blood samples (n = 474) from hospitalized COVID-19 patients (n = 123), non-COVID-19 ICU sepsis patients (n = 25) and healthy controls (n = 30). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA was detected in plasma or serum (RNAemia) of COVID-19 ICU patients when neutralizing antibody response was low. RNAemia is associated with higher 28-day ICU mortality (hazard ratio [HR], 1.84 [95% CI, 1.22-2.77] adjusted for age and sex). RNAemia is comparable in performance to the best protein predictors. Mannose binding lectin 2 and pentraxin-3 (PTX3), two activators of the complement pathway of the innate immune system, are positively associated with mortality. Machine learning identified 'Age, RNAemia' and 'Age, PTX3' as the best binary signatures associated with 28-day ICU mortality. In longitudinal comparisons, COVID-19 ICU patients have a distinct proteomic trajectory associated with mortality, with recovery of many liver-derived proteins indicating survival. Finally, proteins of the complement system and galectin-3-binding protein (LGALS3BP) are identified as interaction partners of SARS-CoV-2 spike glycoprotein. LGALS3BP overexpression inhibits spike-pseudoparticle uptake and spike-induced cell-cell fusion in vitro.


Assuntos
COVID-19/prevenção & controle , Cuidados Críticos/estatística & dados numéricos , Proteômica/métodos , RNA Viral/genética , SARS-CoV-2/genética , Adulto , Animais , Anticorpos Neutralizantes/imunologia , Antígenos de Neoplasias/metabolismo , Biomarcadores Tumorais/metabolismo , Proteína C-Reativa/metabolismo , COVID-19/metabolismo , COVID-19/virologia , Feminino , Células HEK293 , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , RNA Viral/sangue , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Componente Amiloide P Sérico/metabolismo , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Carga Viral/imunologia
11.
Sci Data ; 6(1): 149, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409798

RESUMO

Biomedical informatics has traditionally adopted a linear view of the informatics process (collect, store and analyse) in translational medicine (TM) studies; focusing primarily on the challenges in data integration and analysis. However, a data management challenge presents itself with the new lifecycle view of data emphasized by the recent calls for data re-use, long term data preservation, and data sharing. There is currently a lack of dedicated infrastructure focused on the 'manageability' of the data lifecycle in TM research between data collection and analysis. Current community efforts towards establishing a culture for open science prompt the creation of a data custodianship environment for management of TM data assets to support data reuse and reproducibility of research results. Here we present the development of a lifecycle-based methodology to create a metadata management framework based on community driven standards for standardisation, consolidation and integration of TM research data. Based on this framework, we also present the development of a new platform (PlatformTM) focused on managing the lifecycle for translational research data assets.


Assuntos
Disseminação de Informação , Informática Médica , Pesquisa Translacional Biomédica , Humanos , Metadados , Interface Usuário-Computador
12.
Brief Bioinform ; 20(2): 609-623, 2019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-29684165

RESUMO

Large amounts of data emerging from experiments in molecular medicine are leading to the identification of molecular signatures associated with disease subtypes. The contextualization of these patterns is important for obtaining mechanistic insight into the aberrant processes associated with a disease, and this typically involves the integration of multiple heterogeneous types of data. In this review, we discuss knowledge representations that can be useful to explore the biological context of molecular signatures, in particular three main approaches, namely, pathway mapping approaches, molecular network centric approaches and approaches that represent biological statements as knowledge graphs. We discuss the utility of each of these paradigms, illustrate how they can be leveraged with selected practical examples and identify ongoing challenges for this field of research.


Assuntos
Biologia Computacional , Medicina Molecular , Humanos , Medicina de Precisão
13.
NPJ Syst Biol Appl ; 4: 21, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29872544

RESUMO

The development of computational approaches in systems biology has reached a state of maturity that allows their transition to systems medicine. Despite this progress, intuitive visualisation and context-dependent knowledge representation still present a major bottleneck. In this paper, we describe the Disease Maps Project, an effort towards a community-driven computationally readable comprehensive representation of disease mechanisms. We outline the key principles and the framework required for the success of this initiative, including use of best practices, standards and protocols. We apply a modular approach to ensure efficient sharing and reuse of resources for projects dedicated to specific diseases. Community-wide use of disease maps will accelerate the conduct of biomedical research and lead to new disease ontologies defined from mechanism-based disease endotypes rather than phenotypes.

14.
BMC Syst Biol ; 12(1): 60, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29843806

RESUMO

BACKGROUND: Multilevel data integration is becoming a major area of research in systems biology. Within this area, multi-'omics datasets on complex diseases are becoming more readily available and there is a need to set standards and good practices for integrated analysis of biological, clinical and environmental data. We present a framework to plan and generate single and multi-'omics signatures of disease states. METHODS: The framework is divided into four major steps: dataset subsetting, feature filtering, 'omics-based clustering and biomarker identification. RESULTS: We illustrate the usefulness of this framework by identifying potential patient clusters based on integrated multi-'omics signatures in a publicly available ovarian cystadenocarcinoma dataset. The analysis generated a higher number of stable and clinically relevant clusters than previously reported, and enabled the generation of predictive models of patient outcomes. CONCLUSIONS: This framework will help health researchers plan and perform multi-'omics big data analyses to generate hypotheses and make sense of their rich, diverse and ever growing datasets, to enable implementation of translational P4 medicine.


Assuntos
Doença/genética , Biologia de Sistemas/métodos , Biomarcadores/metabolismo , Análise por Conglomerados , Reações Falso-Positivas , Aprendizado de Máquina , Controle de Qualidade
15.
Bioinformatics ; 33(7): 1096-1098, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27993779

RESUMO

Summary: The goal of this work is to offer a computational framework for exploring data from the Recon2 human metabolic reconstruction model. Advanced user access features have been developed using the Neo4j graph database technology and this paper describes key features such as efficient management of the network data, examples of the network querying for addressing particular tasks, and how query results are converted back to the Systems Biology Markup Language (SBML) standard format. The Neo4j-based metabolic framework facilitates exploration of highly connected and comprehensive human metabolic data and identification of metabolic subnetworks of interest. A Java-based parser component has been developed to convert query results (available in the JSON format) into SBML and SIF formats in order to facilitate further results exploration, enhancement or network sharing. Availability and Implementation: The Neo4j-based metabolic framework is freely available from: https://diseaseknowledgebase.etriks.org/metabolic/browser/ . The java code files developed for this work are available from the following url: https://github.com/ibalaur/MetabolicFramework . Contact: ibalaur@eisbm.org. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Redes e Vias Metabólicas , Software , Gráficos por Computador , Sistemas de Gerenciamento de Base de Dados , Bases de Dados Factuais , Genoma , Humanos , Redes e Vias Metabólicas/genética , Modelos Biológicos
16.
J Comput Biol ; 24(10): 969-980, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27627442

RESUMO

The development of colorectal cancer (CRC)-the third most common cancer type-has been associated with deregulations of cellular mechanisms stimulated by both genetic and epigenetic events. StatEpigen is a manually curated and annotated database, containing information on interdependencies between genetic and epigenetic signals, and specialized currently for CRC research. Although StatEpigen provides a well-developed graphical user interface for information retrieval, advanced queries involving associations between multiple concepts can benefit from more detailed graph representation of the integrated data. This can be achieved by using a graph database (NoSQL) approach. Data were extracted from StatEpigen and imported to our newly developed EpiGeNet, a graph database for storage and querying of conditional relationships between molecular (genetic and epigenetic) events observed at different stages of colorectal oncogenesis. We illustrate the enhanced capability of EpiGeNet for exploration of different queries related to colorectal tumor progression; specifically, we demonstrate the query process for (i) stage-specific molecular events, (ii) most frequently observed genetic and epigenetic interdependencies in colon adenoma, and (iii) paths connecting key genes reported in CRC and associated events. The EpiGeNet framework offers improved capability for management and visualization of data on molecular events specific to CRC initiation and progression.


Assuntos
Neoplasias Colorretais/genética , Biologia Computacional/métodos , Gráficos por Computador , Epigênese Genética , Redes Reguladoras de Genes , Software , Bases de Dados Factuais , Humanos
17.
BMC Bioinformatics ; 17(1): 494, 2016 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-27919219

RESUMO

BACKGROUND: When modeling in Systems Biology and Systems Medicine, the data is often extensive, complex and heterogeneous. Graphs are a natural way of representing biological networks. Graph databases enable efficient storage and processing of the encoded biological relationships. They furthermore support queries on the structure of biological networks. RESULTS: We present the Java-based framework STON (SBGN TO Neo4j). STON imports and translates metabolic, signalling and gene regulatory pathways represented in the Systems Biology Graphical Notation into a graph-oriented format compatible with the Neo4j graph database. CONCLUSION: STON exploits the power of graph databases to store and query complex biological pathways. This advances the possibility of: i) identifying subnetworks in a given pathway; ii) linking networks across different levels of granularity to address difficulties related to incomplete knowledge representation at single level; and iii) identifying common patterns between pathways in the database.


Assuntos
Redes Reguladoras de Genes , Redes e Vias Metabólicas , Transdução de Sinais , Software , Biologia de Sistemas/métodos , Bases de Dados Factuais , Humanos
18.
BioData Min ; 9: 23, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27462371

RESUMO

BACKGROUND: Systems biology experiments generate large volumes of data of multiple modalities and this information presents a challenge for integration due to a mix of complexity together with rich semantics. Here, we describe how graph databases provide a powerful framework for storage, querying and envisioning of biological data. RESULTS: We show how graph databases are well suited for the representation of biological information, which is typically highly connected, semi-structured and unpredictable. We outline an application case that uses the Neo4j graph database for building and querying a prototype network to provide biological context to asthma related genes. CONCLUSIONS: Our study suggests that graph databases provide a flexible solution for the integration of multiple types of biological data and facilitate exploratory data mining to support hypothesis generation.

19.
Methods Mol Biol ; 1386: 43-60, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26677178

RESUMO

Recent advances in genomics have led to the rapid and relatively inexpensive collection of patient molecular data including multiple types of omics data. The integration of these data with clinical measurements has the potential to impact on our understanding of the molecular basis of disease and on disease management. Systems medicine is an approach to understanding disease through an integration of large patient datasets. It offers the possibility for personalized strategies for healthcare through the development of a new taxonomy of disease. Advanced computing will be an important component in effectively implementing systems medicine. In this chapter we describe three computational challenges associated with systems medicine: disease subtype discovery using integrated datasets, obtaining a mechanistic understanding of disease, and the development of an informatics platform for the mining, analysis, and visualization of data emerging from translational medicine studies.


Assuntos
Medicina , Biologia de Sistemas , Atenção à Saúde/métodos , Atenção à Saúde/tendências , Genômica/métodos , Genômica/tendências , Saúde , Humanos , Informática/métodos , Informática/tendências , Medicina/métodos , Medicina/tendências , Biologia de Sistemas/métodos , Biologia de Sistemas/tendências , Pesquisa Translacional Biomédica
20.
Plant Physiol ; 167(3): 1158-85, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25596183

RESUMO

The hemibiotrophic fungus Zymoseptoria tritici causes Septoria tritici blotch disease of wheat (Triticum aestivum). Pathogen reproduction on wheat occurs without cell penetration, suggesting that dynamic and intimate intercellular communication occurs between fungus and plant throughout the disease cycle. We used deep RNA sequencing and metabolomics to investigate the physiology of plant and pathogen throughout an asexual reproductive cycle of Z. tritici on wheat leaves. Over 3,000 pathogen genes, more than 7,000 wheat genes, and more than 300 metabolites were differentially regulated. Intriguingly, individual fungal chromosomes contributed unequally to the overall gene expression changes. Early transcriptional down-regulation of putative host defense genes was detected in inoculated leaves. There was little evidence for fungal nutrient acquisition from the plant throughout symptomless colonization by Z. tritici, which may instead be utilizing lipid and fatty acid stores for growth. However, the fungus then subsequently manipulated specific plant carbohydrates, including fructan metabolites, during the switch to necrotrophic growth and reproduction. This switch coincided with increased expression of jasmonic acid biosynthesis genes and large-scale activation of other plant defense responses. Fungal genes encoding putative secondary metabolite clusters and secreted effector proteins were identified with distinct infection phase-specific expression patterns, although functional analysis suggested that many have overlapping/redundant functions in virulence. The pathogenic lifestyle of Z. tritici on wheat revealed through this study, involving initial defense suppression by a slow-growing extracellular and nutritionally limited pathogen followed by defense (hyper) activation during reproduction, reveals a subtle modification of the conceptual definition of hemibiotrophic plant infection.


Assuntos
Ascomicetos/metabolismo , Cromossomos Fúngicos/genética , Metaboloma/genética , Imunidade Vegetal , Transcriptoma/genética , Triticum/imunologia , Triticum/microbiologia , Ascomicetos/genética , Ascomicetos/crescimento & desenvolvimento , Progressão da Doença , Frutanos/metabolismo , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Hexoses/metabolismo , Família Multigênica , Nitratos/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Reprodução Assexuada , Ácido Salicílico/metabolismo , Análise de Sequência de RNA , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...