Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 74(3): 431-8, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21030085

RESUMO

The eutrophication of water leads to massive blooms of cyanobacteria potentially producers of highly toxic substances: cyanotoxins, especially microcystins (MC). The contamination of water used for irrigation by these toxins, can cause several adverse effects on plants and microorganisms. In this work, we report the phytotoxic effects of microcystins on the development of symbiosis between the leguminous plant Medicago sativa (Alfalfa) and rhizobia strains. The exposure of rhizobial strains to three different concentrations 0.01, 0.05 and 0.1 µg MC ml(-1) led to decrease on the bacteria growth. The strains of rhizobia Rh L1, Rh L2, Rh L3 and Rh L4 reduced their growth to, respectively, 20.85%, 20.80%, 33.19% and 25.65%. The chronic exposure of alfalfa seeds and seedlings to different MC concentrations affects the whole stages of plant development. The germination process has also been disrupted with an inhibition, which reaches 68.34% for a 22.24 µg MC ml(-1). Further, seedlings growth and photosynthetic process were also disrupted. The toxins reduced significantly the roots length and nodule formation and leads to an oxidative stress. Thus, the MCs contained in lake water and used for irrigation affect the development of symbiosis between M. sativa and Rhizobia.


Assuntos
Medicago sativa/efeitos dos fármacos , Microcistinas/toxicidade , Microcystis/crescimento & desenvolvimento , Feromônios/toxicidade , Rhizobiaceae/efeitos dos fármacos , Simbiose/efeitos dos fármacos , Irrigação Agrícola , Eutrofização , Medicago sativa/microbiologia , Medicago sativa/fisiologia , Estresse Oxidativo , Rhizobiaceae/fisiologia
2.
Ecotoxicol Environ Saf ; 73(5): 762-70, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20045191

RESUMO

In this study, a 12-day growth trial was conducted to compare the effect of the variation in microcystin (MC) composition in two Microcystis aeruginosa bloom samples on the growth performance and MC accumulation/transfer in the common carp (Cyprinus carpio L.) larvae. Fish were fed Artemia salina nauplii that had been preexposed to extracts from two M. aeruginosa natural blooms with different microcystins (MCs) profiles. Bloom A had MC-LR as major toxin (74.05%) while bloom B had a diversity of MC (MC-RR; MC-(H4)YR; MC-YR; MC-LR; MC-FR; MC-WR) with no dominance of MC-LR. Newly-hatched Artemia nauplii were exposed separately to the two M. aeruginosa extracts A and B (100 microg L(-1)EqMC-LR) for 2h. The MC concentration in the nauplii was 73.60+/-7.88ngEqMC-LRg(-1)FW (n=4, mean+/-SE) for bloom A and 87.04+/-10.31ngEqMC-LRg(-1)FW for bloom B. These contaminated nauplii were given at the same ration to different groups (A and B) of fish larvae. Larval weight and length from day 9 were significantly different between groups A and B, and in both cases lower than that of a control group fed non-exposed nauplii. MCs accumulation by larvae, inversely correlated with the growth performance, was also significantly different between groups A and B (37.43+/-2.61 and 54.55+/-3.01ngEqMC-LRg(-1) FW, respectively, at the end of the experimental period). These results indicate that MC profile of a bloom may have differential effects on toxin accumulation/transfer and toxicity.


Assuntos
Artemia/metabolismo , Carcinógenos/metabolismo , Carpas/metabolismo , Microcistinas/toxicidade , Animais , Cadeia Alimentar , Larva/metabolismo , Microcistinas/metabolismo , Microcystis/crescimento & desenvolvimento , Microcystis/metabolismo
3.
Int J Mol Sci ; 10(1): 133-146, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19333438

RESUMO

Early life stage tests with zebrafish (Danio rerio) were used to detect toxic effects of compounds from a Microcystis aeruginosa natural bloom extract on their embryolarval development. We carried out the exposure of developing stages of fish to complex cyanobacterial blooms containing hepatotoxic molecules - microcystins. Fish embryo tests performed with the bloom extract containing 3 mg.L(-1) Eq microcystin-LR showed that after 24 h of exposure all fish embryos died. The same tests performed with other diluted extracts (containing 0.3, 0.1 and 0.03 mg.L(-1) Eq microcystin-LR) were shown to have an influence on zebrafish development and a large number of embryos showed malformation signs (edema, bent and curving tail). After hatching the larvae were transferred to a medium without toxins to follow the larval development under the new conditions. The specific growth of the pre-exposed larvae was significantly more important than that of the control larvae. This may represent a compensatory growth used to reduce the difference in size with the control fish noted after hatching.


Assuntos
Anormalidades Induzidas por Medicamentos , Larva/efeitos dos fármacos , Microcistinas/toxicidade , Peixe-Zebra/embriologia , Animais , Eutrofização , Microcistinas/isolamento & purificação , Microcystis/química , Cauda/anormalidades
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...