Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 43(2): 327-343, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31714612

RESUMO

Salinity-induced metabolic, ionic, and transcript modifications in plants have routinely been studied using whole plant tissues, which do not provide information on spatial tissue responses. The aim of this study was to assess the changes in the lipid profiles in a spatial manner and to quantify the changes in the elemental composition in roots of seedlings of four barley cultivars before and after a short-term salt stress. We used a combination of liquid chromatography-tandem mass spectrometry, inductively coupled plasma mass spectrometry, matrix-assisted laser desorption/ionization mass spectrometry imaging, and reverse transcription - quantitative real time polymerase chain reaction platforms to examine the molecular signatures of lipids, ions, and transcripts in three anatomically different seminal root tissues before and after salt stress. We found significant changes to the levels of major lipid classes including a decrease in the levels of lysoglycerophospholipids, ceramides, and hexosylceramides and an increase in the levels of glycerophospholipids, hydroxylated ceramides, and hexosylceramides. Our results revealed that modifications to lipid and transcript profiles in plant roots in response to a short-term salt stress may involve recycling of major lipid species, such as phosphatidylcholine, via resynthesis from glycerophosphocholine.


Assuntos
Hordeum/metabolismo , Lipidômica/métodos , Lipídeos/análise , Raízes de Plantas/metabolismo , Salinidade , Estresse Salino/fisiologia , Ceramidas/análise , Cromatografia Líquida/métodos , Regulação da Expressão Gênica de Plantas , Glicerofosfolipídeos/análise , Hordeum/efeitos dos fármacos , Hordeum/genética , Íons/metabolismo , Metabolismo dos Lipídeos/genética , Metaboloma , Metabolômica , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Estresse Salino/genética , Sais/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas em Tandem/métodos
2.
Metabolomics ; 14(5): 63, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29681790

RESUMO

INTRODUCTION: Mass spectrometry imaging (MSI) is a technology that enables the visualization of the spatial distribution of hundreds to thousands of metabolites in the same tissue section simultaneously. Roots are below-ground plant organs that anchor plants to the soil, take up water and nutrients, and sense and respond to external stresses. Physiological responses to salinity are multifaceted and have predominantly been studied using whole plant tissues that cannot resolve plant salinity responses spatially. OBJECTIVES: This study aimed to use a comprehensive approach to study the spatial distribution and profiles of metabolites, and to quantify the changes in the elemental content in young developing barley seminal roots before and after salinity stress. METHODS: Here, we used a combination of liquid chromatography-mass spectrometry (LC-MS), inductively coupled plasma mass spectrometry (ICP-MS), and matrix-assisted laser desorption/ionization (MALDI-MSI) platforms to profile and analyze the spatial distribution of ions, metabolites and lipids across three anatomically different barley root zones before and after a short-term salinity stress (150 mM NaCl). RESULTS: We localized, visualized and discriminated compounds in fine detail along longitudinal root sections and compared ion, metabolite, and lipid composition before and after salt stress. Large changes in the phosphatidylcholine (PC) profiles were observed as a response to salt stress with PC 34:n showing an overall reduction in salt treated roots. ICP-MS analysis quantified changes in the elemental content of roots with increases of Na+ and decreases of K+ content. CONCLUSION: Our results established the suitability of combining three mass spectrometry platforms to analyze and map ionic and metabolic responses to salinity stress in plant roots and to elucidate tolerance mechanisms in response to abiotic stress, such as salinity stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...