Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 22(12)2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29261102

RESUMO

The Atlas of Diabetes reports 415 million diabetics in the world, a number that has surpassed in half the expected time the twenty year projection. Type 2 diabetes is the most frequent form of the disease; it is characterized by a defect in the secretion of insulin and a resistance in its target organs. In the search for new antidiabetic drugs, one of the principal strategies consists in promoting the action of insulin. In this sense, attention has been centered in the protein tyrosine phosphatase 1B (PTP1B), a protein whose overexpression or increase of its activity has been related in many studies with insulin resistance. In the present work, a chemical library of 250 compounds was evaluated to determine their inhibition capability on the protein PTP1B. Ten molecules inhibited over the 50% of the activity of the PTP1B, the three most potent molecules were selected for its characterization, reporting Ki values of 5.2, 4.2 and 41.3 µM, for compounds 1, 2, and 3, respectively. Docking and molecular dynamics studies revealed that the three inhibitors made interactions with residues at the secondary binding site to phosphate, exclusive for PTP1B. The data reported here support these compounds as hits for the design more potent and selective inhibitors against PTP1B in the search of new antidiabetic treatment.


Assuntos
Benzimidazóis/química , Hipoglicemiantes/química , Modelos Moleculares , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Cinética , Ligação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 1/química , Termodinâmica
2.
Curr Protein Pept Sci ; 17(3): 260-74, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26983887

RESUMO

Malaria is one of the main infectious diseases in tropical developing countries and represents high morbidity and mortality rates nowadays. The principal etiological agent P. falciparum is transmitted through the bite of the female Anopheles mosquito. The issue has escalated due to the emergence of resistant strains to most of the antimalarials used for the treatment including Chloroquine, Sulfadoxine-Pyrimethamine, and recently Artemisinin derivatives, which has led to diminished effectiveness and by consequence increased the severity of epidemic outbreaks. Due to the lack of effective compounds to treat these drug-resistant strains, the discovery or development of novel anti-malaria drugs is important. In this context, one strategy has been to find inhibitors of enzymes, which play an important role for parasite survival. Today, promising results have been obtained in this regard, involving the entire P. falciparum metabolism. These inhibitors could serve as leads in the search of a new chemotherapy against malaria. This review focuses on the achievements in recent years with regard to inhibition of enzymes used as targets for drug design against malaria.


Assuntos
Antimaláricos/farmacologia , Desenho de Fármacos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/metabolismo , Animais , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , Plasmodium falciparum/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...