Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38399059

RESUMO

SmCo5 constitutes one of the strongest classes of permanent magnets, which exhibit magnetocrystalline anisotropy with uniaxial character and enormous energy and possess high Curie temperature. However, the performance of SmCo5 permanent magnets is hindered by a limited energy product and relatively high supply risk. Sm is a moderately expensive element within the lanthanide group, while Co is a more expensive material than Fe, making SmCo5-based permanent magnets among the most expensive materials in the group. Subsequently, the need for new materials with less content in critical and thus expensive resources is obvious. A promising path of producing new compounds that meet these requirements is the chemical modification of established materials used in PM towards the reduction of expensive resources, for example, reducing Co content with transition metals (like Fe, Ni) or using as substitutes raw rare earth materials with greater abundance than global demand, like Ce and La. Important instruments to achieve these goals are theoretical calculations, such as ab initio methods and especially DFT-based calculations, in predicting possible stable RE-TM intermetallic compounds and their magnetic properties. This review aims to present the progress of recent years in the production of improved SmCo5-type magnets.

2.
Materials (Basel) ; 16(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36676281

RESUMO

SmCo5 is a well-established material in the permanent magnet industry, a sector which constantly gains market share due to increasing demand but also suffers from criticality of some raw materials. In this work we study the possibility of replacement of Sm with other, more abundant rare earth atoms like Ce-La. These raw materials are usually called "free" rare-earth minerals, appearing as a by-product during mining and processing of other raw materials. Samples with nominal stoichiometry Sm1-xMMxCo5 (x = 0.1-1.0) were prepared in bulk form with conventional metallurgy techniques and their basic structural and magnetic properties were examined. The materials retain the hexagonal CaCu5-type structure while minor fluctuations in unit cell parameters as observed with X-ray diffraction. Incorporation of Ce-La degrade intrinsic magnetic properties, Curie temperature drops from 920 K to 800 K across the series and mass magnetization from 98 Am2/kg to 60 Am2/kg; effects which trade off for the significantly reduced price. Atomistic simulations, implemented based on Density Functional Theory calculations are used in the case of the stoichiometry with x = 0.5 to calculate atomic magnetic moments and provide additional insight in the complex interactions that dominate the magnetic properties of the material.

3.
Nanoscale Adv ; 3(9): 2516-2528, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-36134160

RESUMO

Selenium compounds exhibit excellent anticancer properties but have a narrow therapeutic window. Selenium nanoparticles, however, are less toxic compared to other selenium forms, and their biogenic production leads to improved bioavailability. Herein, we used the probiotic strain Lactobacillus casei ATCC 393, previously shown to inhibit colon cancer cell growth, to synthesize biogenic selenium nanoparticles. We examined the anticancer activity of orally administered L. casei, L. casei-derived selenium nanoparticles and selenium nanoparticle-enriched L. casei, and investigated their antitumor potential in the CT26 syngeneic colorectal cancer model in BALB/c mice. Our results indicate that L. casei-derived selenium nanoparticles and selenium nanoparticle-enriched L. casei exert cancer-specific antiproliferative activity in vitro. Moreover, the nanoparticles were found to induce apoptosis and elevate reactive oxygen species levels in cancer cells. It is noteworthy that, when administered orally, selenium nanoparticle-enriched L. casei attenuated the growth of colon carcinoma in mice more effectively than the isolated nanoparticles or L. casei, suggesting a potential additive effect of the nanoparticles and the probiotic. To the best of our knowledge this is the first comparative study examining the anticancer effects of selenium nanoparticles synthesized by a microorganism, the selenium nanoparticle-enriched microorganism and the sole microorganism.

4.
ACS Appl Mater Interfaces ; 12(25): 28520-28531, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32379412

RESUMO

A millifluidic reactor with a 0.76 mm internal diameter was utilized for the synthesis of monodisperse, high magnetic moment, iron carbide (FexCy) nanoparticles by thermal decomposition of iron pentacarbonyl (Fe(CO)5) in 1-octadecene in the presence of oleylamine at 22 min nominal residence time. The effect of reaction conditions (temperature and pressure) on the size, morphology, crystal structure, and magnetic properties of the nanoparticles was investigated. The system developed facilitated the thermal decomposition of precursor at reaction conditions (up to 265 °C and 4 bar) that cannot be easily achieved in conventional batch reactors. The degree of carbidization was enhanced by operating at elevated temperature and pressure. The nanoparticles synthesized in the flow reactor had size 9-18 nm and demonstrated high saturation magnetization (up to 164 emu/gFe). They further showed good stability against oxidation after 2 months of exposure in air, retaining good saturation magnetization values with a change of no more than 10% of the initial value. The heating ability of the nanoparticles in an alternating magnetic field was comparable with other ferrites reported in the literature, having intrinsic loss power values up to 1.52 nHm2 kg-1.

5.
Materials (Basel) ; 12(12)2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31226816

RESUMO

Magnetic graphene oxide was impregnated with polymers for the preparation of nanocomposite adsorbents to be examined for the adsorptive removal of a typical endocrine disruptor, bisphenol-A (BPA) from aqueous solutions. The polymers used were polystyrene, chitosan and polyaniline. The nanocomposites prepared were characterized for their structure, morphology and surface chemistry. The nanocomposites presented an increase adsorptive activity for BPA at ambient conditions, compared to pure magnetic oxide, attributed to the synergistic effect of the polymers and the magnetic graphene oxide. The increased adsorption of BPA exhibited by the nanocomposites with chitosan and polyaniline could be attributed to the contribution of amine groups.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...