Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(5): e0285504, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37200365

RESUMO

Agrobacterium rhizogenes-mediated transformation has long been explored as a versatile and reliable method for gene function validation in many plant species, including soybean (Glycine max). Likewise, detached-leaf assays have been widely used for rapid and mass screening of soybean genotypes for disease resistance. The present study combines these two methods to establish an efficient and practical system to generate transgenic soybean hairy roots from detached leaves and their subsequent culture under ex vitro conditions. We demonstrated that hairy roots derived from leaves of two (tropical and temperate) soybean cultivars could be successfully infected by economically important species of root-knot nematodes (Meloidogyne incognita and M. javanica). The established detached-leaf method was further explored for functional validation of two candidate genes encoding for cell wall modifying proteins (CWMPs) to promote resistance against M. incognita through distinct biotechnological strategies: the overexpression of a wild Arachis α-expansin transgene (AdEXPA24) and the dsRNA-mediated silencing of an endogenous soybean polygalacturonase gene (GmPG). AdEXPA24 overexpression in hairy roots of RKN-susceptible soybean cultivar significantly reduced nematode infection by approximately 47%, whereas GmPG downregulation caused an average decrease of 37%. This novel system of hairy root induction from detached leaves showed to be an efficient, practical, fast, and low-cost method suitable for high throughput in root analysis of candidate genes in soybean.


Assuntos
Glycine max , Nematoides , Animais , Glycine max/genética , Glycine max/metabolismo , Nematoides/genética , Transgenes , Folhas de Planta/genética , Folhas de Planta/metabolismo , Genótipo
2.
Plant J ; 107(6): 1681-1696, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34231270

RESUMO

Plant expansins are structural cell wall-loosening proteins implicated in several developmental processes and responses to environmental constraints and pathogen infection. To date, there is limited information about the biological function of expansins-like B (EXLBs), one of the smallest and less-studied subfamilies of plant expansins. In the present study, we conducted a functional analysis of the wild Arachis AdEXLB8 gene in transgenic tobacco (Nicotiana tabacum) plants to clarify its putative role in mediating defense responses to abiotic and biotic stresses. First, its cell wall localization was confirmed in plants expressing an AdEXLB8:eGFP fusion protein, while nanomechanical assays indicated cell wall reorganization and reassembly due to AdEXLB8 overexpression without compromising the phenotype. We further demonstrated that AdEXLB8 increased tolerance not only to isolated abiotic (drought) and biotic (Sclerotinia sclerotiorum and Meloidogyne incognita) stresses but also to their combination. The jasmonate and abscisic acid signaling pathways were clearly favored in transgenic plants, showing an activated antioxidative defense system. In addition to modifications in the biomechanical properties of the cell wall, we propose that AdEXLB8 overexpression interferes with phytohormone dynamics leading to a defense primed state, which culminates in plant defense responses against isolated and combined abiotic and biotic stresses.


Assuntos
Arachis/genética , Nicotiana/fisiologia , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Ácido Abscísico/metabolismo , Animais , Ascomicetos/patogenicidade , Fenômenos Biomecânicos , Parede Celular/genética , Parede Celular/metabolismo , Ciclopentanos/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Oxilipinas/metabolismo , Células Vegetais/metabolismo , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Nicotiana/citologia , Nicotiana/genética , Nicotiana/microbiologia , Tylenchoidea/patogenicidade
3.
Sci Rep ; 11(1): 11097, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045561

RESUMO

Nematodes and drought are major constraints in tropical agriculture and often occur simultaneously. Plant responses to these stresses are complex and require crosstalk between biotic and abiotic signaling pathways. In this study, we explored the transcriptome data of wild Arachis species subjected to drought (A-metaDEG) and the root-knot nematode Meloidogyne arenaria (B-metaDEG) via meta-analysis, to identify core-stress responsive genes to each individual and concurrent stresses in these species. Transcriptome analysis of a nematode/drought bioassay (cross-stress) showed that the set of stress responsive DEGs to concurrent stress is distinct from those resulting from overlapping A- and B-metaDEGs, indicating a specialized and unique response to combined stresses in wild Arachis. Whilst individual biotic and abiotic stresses elicit hormone-responsive genes, most notably in the jasmonic and abscisic acid pathways, combined stresses seem to trigger mainly the ethylene hormone pathway. The overexpression of a cross-stress tolerance candidate gene identified here, an endochitinase-encoding gene (AsECHI) from Arachis stenosperma, reduced up to 30% of M. incognita infection and increased post-drought recovery in Arabidopsis plants submitted to both stresses. The elucidation of the network of cross-stress responsive genes in Arachis contributes to better understanding the complex regulation of biotic and abiotic responses in plants facilitating more adequate crop breeding for combined stress tolerance.


Assuntos
Arachis/genética , Arachis/parasitologia , Secas , Estresse Fisiológico/fisiologia , Tylenchoidea , Animais , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Transcriptoma
4.
Mol Genet Genomics ; 295(4): 1063-1078, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32333171

RESUMO

Root-knot nematodes (RKNs, genus Meloidogyne) affect a large number of crops causing severe yield losses worldwide, more specifically in tropical and sub-tropical regions. Several plant species display high resistance levels to Meloidogyne, but a general view of the plant immune molecular responses underlying resistance to RKNs is still lacking. Combining comparative genomics with differential gene expression analysis may allow the identification of widely conserved plant genes involved in RKN resistance. To identify genes that are evolutionary conserved across plant species, we used OrthoFinder to compared the predicted proteome of 22 plant species, including important crops, spanning 214 Myr of plant evolution. Overall, we identified 35,238 protein orthogroups, of which 6,132 were evolutionarily conserved and universal to all the 22 plant species (PLAnts Common Orthogroups-PLACO). To identify host genes responsive to RKN infection, we analyzed the RNA-seq transcriptome data from RKN-resistant genotypes of a peanut wild relative (Arachis stenosperma), coffee (Coffea arabica L.), soybean (Glycine max L.), and African rice (Oryza glaberrima Steud.) challenged by Meloidogyne spp. using EdgeR and DESeq tools, and we found 2,597 (O. glaberrima), 743 (C. arabica), 665 (A. stenosperma), and 653 (G. max) differentially expressed genes (DEGs) during the resistance response to the nematode. DEGs' classification into the previously characterized 35,238 protein orthogroups allowed identifying 17 orthogroups containing at least one DEG of each resistant Arachis, coffee, soybean, and rice genotype analyzed. Orthogroups contain 364 DEGs related to signaling, secondary metabolite production, cell wall-related functions, peptide transport, transcription regulation, and plant defense, thus revealing evolutionarily conserved RKN-responsive genes. Interestingly, the 17 DEGs-containing orthogroups (belonging to the PLACO) were also universal to the 22 plant species studied, suggesting that these core genes may be involved in ancestrally conserved immune responses triggered by RKN infection. The comparative genomic approach that we used here represents a promising predictive tool for the identification of other core plant defense-related genes of broad interest that are involved in different plant-pathogen interactions.


Assuntos
Produtos Agrícolas/genética , Resistência à Doença/genética , Proteínas de Plantas/genética , Tylenchoidea/patogenicidade , Animais , Arachis/genética , Arachis/parasitologia , Café/genética , Café/parasitologia , Produtos Agrícolas/parasitologia , Regulação da Expressão Gênica de Plantas/genética , Genômica , Genótipo , Interações Hospedeiro-Patógeno/genética , Oryza/genética , Oryza/parasitologia , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Imunidade Vegetal/genética , Glycine max/genética , Glycine max/parasitologia , Tylenchoidea/genética
5.
J Proteomics ; 217: 103690, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32068185

RESUMO

Arachis stenosperma is a wild peanut relative exclusive to South America that harbors high levels of resistance against several pathogens, including the peanut root-knot nematode (RKN) Meloidogyne arenaria. In this study, a proteomic survey of A. stenosperma-M. arenaria interaction using 2-DE and LC-MS/MS identified approximately 1400 proteins, out of which 222 were differentially abundant (DAPs) when RKN inoculated root samples were compared to the control. Most of these DAPs were assigned to functional categories related to plant responses to pathogens including stress, glycolysis, redox and tricarboxylic acid cycle. The comparison between the transcriptome (RNA-Seq) and proteome expression changes, showed that almost 55% of these DAPs encode genes with a similar expression trend to their protein counterparts. Most of these genes were induced during RKN infection and some were related to plant defense, such as MLP-like protein 34 (MLP34), cinnamoyl-CoA reductase 1 (CCR1), enolase (ENO), alcohol dehydrogenase (ADH) and eukaryotic translation initiation factor 5A (eIF5A). The overexpression of AsMLP34 in Agrobacterium rhizogenes transgenic roots in a susceptible peanut cultivar showed a reduction in the number of M. arenaria galls and egg masses, indicating that AsMLP34 is a promising candidate gene to be exploited in breeding programs for RKN control in peanut. SIGNIFICANCE: The use of an integrated approach to compare plant-nematode transcriptional and translational data enabled the identification of a new gene, AsMLP34, for Meloidogyne resistance.


Assuntos
Tylenchoidea , Agrobacterium , Animais , Arachis/genética , Cromatografia Líquida , Resistência à Doença/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Raízes de Plantas , Proteômica , América do Sul , Espectrometria de Massas em Tandem
6.
PLoS One ; 13(5): e0198191, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29847587

RESUMO

Wild peanut relatives (Arachis spp.) are genetically diverse and were selected throughout evolution to a range of environments constituting, therefore, an important source of allelic diversity for abiotic stress tolerance. In particular, A. duranensis and A. stenosperma, the parents of the reference Arachis A-genome genetic map, show contrasting transpiration behavior under limited water conditions. This study aimed to build a comprehensive gene expression profile of these two wild species under dehydration stress caused by the withdrawal of hydroponic nutrient solution. For this purpose, roots of both genotypes were collected at seven time-points during the early stages of dehydration and used to construct cDNA paired-end libraries. Physiological analyses indicated initial differences in gas exchange parameters between the drought-tolerant genotype of A. duranensis and the drought-sensitive genotype of A. stenosperma. High-quality Illumina reads were mapped against the A. duranensis reference genome and resulted in the identification of 1,235 and 799 Differentially Expressed Genes (DEGs) that responded to the stress treatment in roots of A. duranensis and A. stenosperma, respectively. Further analysis, including functional annotation and identification of biological pathways represented by these DEGs confirmed the distinct gene expression behavior of the two contrasting Arachis species genotypes under dehydration stress. Some species-exclusive and common DEGs were then selected for qRT-PCR analysis, which corroborated the in silico expression profiling. These included genes coding for regulators and effectors involved in drought tolerance responses, such as activation of osmosensing molecular cascades, control of hormone and osmolyte content, and protection of macromolecules. This dataset of transcripts induced during the dehydration process in two wild Arachis genotypes constitute new tools for the understanding of the distinct gene regulation processes in these closely related species but with contrasting drought responsiveness. In addition, our findings provide insights into the nature of drought tolerance in wild germoplasm, which might be explored as novel sources of diversity and useful wild alleles to develop climate-resilient crop varieties.


Assuntos
Arachis/genética , Arachis/fisiologia , Secas , Arachis/metabolismo , Perfilação da Expressão Gênica , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/metabolismo
7.
Plant Mol Biol ; 94(1-2): 79-96, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28243841

RESUMO

Expansins are plant cell wall-loosening proteins involved in adaptive responses to environmental stimuli and various developmental processes. The first genome-wide analysis of the expansin superfamily in the Arachis genus identified 40 members in A. duranensis and 44 in A. ipaënsis, the wild progenitors of cultivated peanut (A. hypogaea). These expansins were further characterized regarding their subfamily classification, distribution along the genomes, duplication events, molecular structure, and phylogeny. A RNA-seq expression analysis in different Arachis species showed that the majority of these expansins are modulated in response to diverse stresses such as water deficit, root-knot nematode (RKN) infection, and UV exposure, with an expansin-like B gene (AraEXLB8) displaying a highly distinct stress-responsive expression profile. Further analysis of the AraEXLB8 coding sequences showed high conservation across the Arachis genotypes, with eight haplotypes identified. The modulation of AraEXLB8 expression in response to the aforementioned stresses was confirmed by qRT-PCR analysis in distinct Arachis genotypes, whilst in situ hybridization revealed transcripts in different root tissues according to the stress imposed. The overexpression of AraEXLB8 in soybean (Glycine max) composite plants remarkably decreased the number of galls in transformed hairy roots inoculated with RKN. This study improves the current understanding of the molecular evolution, divergence, and gene expression of expansins in Arachis, and provides molecular and functional insights into the role of expansin-like B, the less-studied plant expansin subfamily.


Assuntos
Arachis/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Família Multigênica/fisiologia , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Parede Celular/fisiologia , Estudo de Associação Genômica Ampla , Filogenia , Células Vegetais/fisiologia , Doenças das Plantas/microbiologia , Raios Ultravioleta , Água
8.
PLoS One ; 10(10): e0140937, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26488731

RESUMO

Wild peanut relatives (Arachis spp.) are genetically diverse and were adapted to a range of environments during the evolution course, constituting an important source of allele diversity for resistance to biotic and abiotic stresses. The wild diploid A. stenosperma harbors high levels of resistance to a variety of pathogens, including the root-knot nematode (RKN) Meloidogyne arenaria, through the onset of the Hypersensitive Response (HR). In order to identify genes and regulators triggering this defense response, a comprehensive root transcriptome analysis during the first stages of this incompatible interaction was conducted using Illumina Hi-Seq. Overall, eight cDNA libraries were produced generating 28.2 GB, which were de novo assembled into 44,132 contigs and 37,882 loci. Differentially expressed genes (DEGs) were identified and clustered according to their expression profile, with the majority being downregulated at 6 DAI, which coincides with the onset of the HR. Amongst these DEGs, 27 were selected for further qRT-PCR validation allowing the identification of nematode-responsive candidate genes that are putatively related to the resistance response. Those candidates are engaged in the salycilic (NBS-LRR, lipocalins, resveratrol synthase) and jasmonic (patatin, allene oxidase cyclase) acids pathways, and also related to hormonal balance (auxin responsive protein, GH3) and cellular plasticity and signaling (tetraspanin, integrin, expansin), with some of them showing contrasting expression behavior between Arachis RKN-resistant and susceptible genotypes. As these candidate genes activate different defensive signaling systems, the genetic (HR) and the induced resistance (IR), their pyramidding in one genotype via molecular breeding or transgenic strategy might contribute to a more durable resistance, thus improving the long-term control of RKN in peanut.


Assuntos
Arachis/genética , Resistência à Doença/fisiologia , Doenças das Plantas/imunologia , Doenças das Plantas/parasitologia , Tylenchoidea/imunologia , Animais , Ciclopentanos/metabolismo , Perfilação da Expressão Gênica , Genes de Plantas , Lipocalinas/metabolismo , Oxilipinas/metabolismo , Raízes de Plantas/genética , Resveratrol , Estilbenos/metabolismo
9.
Proteomics ; 15(10): 1746-59, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25736976

RESUMO

Cowpea (Vigna unguiculata L. Walp) is an important legume species well adapted to low fertility soils and prolonged drought periods. One of the main problems that cause severe yield losses in cowpea is the root-knot nematode Meloidogyne incognita. The aim of this work was to analyze the differential expression of proteins in the contrasting cultivars of cowpea CE 31 (highly resistant) and CE 109 (slightly resistant) during early stages of M. incognita infection. Cowpea roots were collected at 3, 6, and 9 days after inoculation and used for protein extraction and 2-DE analysis. From a total of 59 differential spots, 37 proteins were identified, mostly involved in plant defense, such as spermidine synthase, patatin, proteasome component, and nitrile-specifier protein. A follow-up study was performed by quantitative RT-PCR analysis of nine selected proteins and the results revealed a very similar upregulation trend between the protein expression profiles and the corresponding transcripts. This study also identified ACT and GAPDH as a good combination of reference genes for quantitative RT-PCR analysis of the pathosystem cowpea/nematode. Additionally, an interactome analysis showed three major pathways affected by nematode infection: proteasome endopeptidase complex, oxidative phosphorylation, and flavonoid biosynthesis. Taken together, the results obtained by proteome, transcriptome, and interactome approaches suggest that oxidative stress, ubiquitination, and glucosinolate degradation may be part of cowpea CE 31 resistance mechanisms in response to nematode infection.


Assuntos
Fabaceae/parasitologia , Interações Hospedeiro-Parasita , Raízes de Plantas/metabolismo , Raízes de Plantas/parasitologia , Proteômica/métodos , Tylenchoidea/fisiologia , Animais , Eletroforese em Gel Bidimensional , Fabaceae/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Estudos de Associação Genética , Interações Hospedeiro-Parasita/genética , Espectrometria de Massas , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
10.
Plant Mol Biol Report ; 33: 1876-1892, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26752807

RESUMO

Peanut (Arachis hypogaea L.) is an important legume cultivated mostly in drought-prone areas where its productivity can be limited by water scarcity. The development of more drought-tolerant varieties is, therefore, a priority for peanut breeding programs worldwide. In contrast to cultivated peanut, wild relatives have a broader genetic diversity and constitute a rich source of resistance/tolerance alleles to biotic and abiotic stresses. The present study takes advantage of this diversity to identify drought-responsive genes by analyzing the expression profile of two wild species, Arachis duranensis and Arachis magna (AA and BB genomes, respectively), in response to progressive water deficit in soil. Data analysis from leaves and roots of A. duranensis (454 sequencing) and A. magna (suppression subtractive hybridization (SSH)) stressed and control complementary DNA (cDNA) libraries revealed several differentially expressed genes in silico, and 44 of them were selected for further validation by quantitative RT-PCR (qRT-PCR). This allowed the identification of drought-responsive candidate genes, such as Expansin, Nitrilase, NAC, and bZIP transcription factors, displaying significant levels of differential expression during stress imposition in both species. This is the first report on identification of differentially expressed genes under drought stress and recovery in wild Arachis species. The generated transcriptome data, besides being a valuable resource for gene discovery, will allow the characterization of new alleles and development of molecular markers associated with drought responses in peanut. These together constitute important tools for the peanut breeding program and also contribute to a better comprehension of gene modulation in response to water deficit and rehydration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...