Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 16(8)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37630983

RESUMO

Caffeine is a naturally occurring alkaloid found in various plants. It acts as a stimulant, antioxidant, anti-inflammatory, and even an aid in pain management, and is found in several over-the-counter medications. This naturally derived bioactive compound is the best-known ingredient in coffee and other beverages, such as tea, soft drinks, and energy drinks, and is widely consumed worldwide. Therefore, it is extremely important to research the effects of this substance on the human body. With this in mind, caffeine and its derivatives have been extensively studied to evaluate its ability to prevent diseases and exert anti-aging and neuroprotective effects. This review is intended to provide an overview of caffeine's effects on cancer and cardiovascular, immunological, inflammatory, and neurological diseases, among others. The heavily researched area of caffeine in sports will also be discussed. Finally, recent advances in the development of novel nanocarrier-based formulations, to enhance the bioavailability of caffeine and its beneficial effects will be discussed.

2.
Biomater Adv ; 151: 213428, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37146527

RESUMO

More than fifty years after the 3Rs definition and despite the continuous implementation of regulatory measures, animals continue to be widely used in basic research. Their use comprises not only in vivo experiments with animal models, but also the production of a variety of supplements and products of animal origin for cell and tissue culture, cell-based assays, and therapeutics. The animal-derived products most used in basic research are fetal bovine serum (FBS), extracellular matrix proteins such as Matrigel™, and antibodies. However, their production raises several ethical issues regarding animal welfare. Additionally, their biological origin is associated with a high risk of contamination, resulting, frequently, in poor scientific data for clinical translation. These issues support the search for new animal-free products able to replace FBS, Matrigel™, and antibodies in basic research. In addition, in silico methodologies play an important role in the reduction of animal use in research by refining the data previously to in vitro and in vivo experiments. In this review, we depicted the current available animal-free alternatives in in vitro research.


Assuntos
Alternativas aos Testes com Animais , Bem-Estar do Animal , Animais , Alternativas aos Testes com Animais/métodos , Modelos Animais , Projetos de Pesquisa
3.
Pharmaceutics ; 15(4)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37111563

RESUMO

The interest in the pharmacological applications of cannabinoids is largely increasing in a wide range of medical areas. Recently, research on its potential role in eye conditions, many of which are chronic and/or disabling and in need of new alternative treatments, has intensified. However, due to cannabinoids' unfavorable physicochemical properties and adverse systemic effects, along with ocular biological barriers to local drug administration, drug delivery systems are needed. Hence, this review focused on the following: (i) identifying eye disease conditions potentially subject to treatment with cannabinoids and their pharmacological role, with emphasis on glaucoma, uveitis, diabetic retinopathy, keratitis and the prevention of Pseudomonas aeruginosa infections; (ii) reviewing the physicochemical properties of formulations that must be controlled and/or optimized for successful ocular administration; (iii) analyzing works evaluating cannabinoid-based formulations for ocular administration, with emphasis on results and limitations; and (iv) identifying alternative cannabinoid-based formulations that could potentially be useful for ocular administration strategies. Finally, an overview of the current advances and limitations in the field, the technological challenges to overcome and the prospective further developments, is provided.

4.
Pharmaceutics ; 13(9)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34575588

RESUMO

Long non-coding RNAs (lncRNAs) are an emerging group of RNAs with a crucial role in cancer pathogenesis. In gastrointestinal cancers, TP53 target 1 (TP53TG1) is an epigenetically regulated lncRNA that represents a promising therapeutic target due to its tumor suppressor properties regulating the p53-mediated DNA damage and the intracellular localization of the oncogenic YBX1 protein. However, to translate this finding into the clinic as a gene therapy, it is important to develop effective carriers able to deliver exogenous lncRNAs to the targeted cancer cells. Here, we propose the use of biocompatible sphingomyelin nanosystems comprising DOTAP (DSNs) to carry and deliver a plasmid vector encoding for TP53TG1 (pc(TP53TG1)-DSNs) to a colorectal cancer cell line (HCT-116). DSNs presented a high association capacity and convenient physicochemical properties. In addition, pc(TP53TG1)-DSNs showed anti-tumor activities in vitro, specifically a decrease in the proliferation rate, a diminished colony-forming capacity, and hampered migration and invasiveness of the treated cancer cells. Consequently, the proposed strategy displays a high potential as a therapeutic approach for colorectal cancer.

5.
Sci Rep ; 11(1): 9873, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972572

RESUMO

Triple negative breast cancer (TNBC) is known for being very aggressive, heterogeneous and highly metastatic. The standard of care treatment is still chemotherapy, with adjacent toxicity and low efficacy, highlighting the need for alternative and more effective therapeutic strategies. Edelfosine, an alkyl-lysophospholipid, has proved to be a promising therapy for several cancer types, upon delivery in lipid nanoparticles. Therefore, the objective of this work was to explore the potential of edelfosine for the treatment of TNBC. Edelfosine nanoemulsions (ET-NEs) composed by edelfosine, Miglyol 812 and phosphatidylcholine as excipients, due to their good safety profile, presented an average size of about 120 nm and a neutral zeta potential, and were stable in biorelevant media. The ability of ET-NEs to interrupt tumor growth in TNBC was demonstrated both in vitro, using a highly aggressive and invasive TNBC cell line, and in vivo, using zebrafish embryos. Importantly, ET-NEs were able to penetrate through the skin barrier of MDA-MB 231 xenografted zebrafish embryos, into the yolk sac, leading to an effective decrease of highly aggressive and invasive tumoral cells' proliferation. Altogether the results demonstrate the potential of ET-NEs for the development of new therapeutic approaches for TNBC.


Assuntos
Antineoplásicos/administração & dosagem , Nanopartículas/administração & dosagem , Éteres Fosfolipídicos/administração & dosagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Administração Cutânea , Animais , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Composição de Medicamentos/métodos , Emulsões , Excipientes/química , Feminino , Humanos , Nanopartículas/química , Permeabilidade , Fosfatidilcolinas/química , Éteres Fosfolipídicos/farmacocinética , Pele/metabolismo , Triglicerídeos/química , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
6.
Eur J Pharm Sci ; 103: 5-18, 2017 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-28263915

RESUMO

This review is a comprehensive analysis of the progress made so far on the delivery of polynucleotide-based therapeutics to the eye, using synthetic nanocarriers. Attention has been addressed to the capacity of different nanocarriers for the specific delivery of polynucleotides to both, the anterior and posterior segments of the eye, with emphasis on their ability to (i) improve the transport of polynucleotides across the different eye barriers; (ii) promote their intracellular penetration into the target cells; (iii) protect them against degradation and, (iv) deliver them in a long-term fashion way. Overall, the conclusion is that despite the advantages that nanotechnology may offer to the area of ocular polynucleotide-based therapies (especially AS-ODN and siRNA delivery), the knowledge disclosed so far is still limited. This fact underlines the necessity of more fundamental and product-oriented research for making the way of the said nanotherapies towards clinical translation.


Assuntos
Portadores de Fármacos/química , Oftalmopatias/terapia , Nanopartículas/química , Polinucleotídeos/administração & dosagem , Administração Oftálmica , Animais , Oftalmopatias/genética , Terapia Genética/métodos , Humanos , Injeções Intravítreas , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/química , Tamanho da Partícula , Polinucleotídeos/química , RNA Interferente Pequeno/administração & dosagem , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...