Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 6: 35098, 2016 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-27734973

RESUMO

We are flooded with large-scale, dynamic, directed, networked data. Analyses requiring exact comparisons between networks are computationally intractable, so new methodologies are sought. To analyse directed networks, we extend graphlets (small induced sub-graphs) and their degrees to directed data. Using these directed graphlets, we generalise state-of-the-art network distance measures (RGF, GDDA and GCD) to directed networks and show their superiority for comparing directed networks. Also, we extend the canonical correlation analysis framework that enables uncovering the relationships between the wiring patterns around nodes in a directed network and their expert annotations. On directed World Trade Networks (WTNs), our methodology allows uncovering the core-broker-periphery structure of the WTN, predicting the economic attributes of a country, such as its gross domestic product, from its wiring patterns in the WTN for up-to ten years in the future. It does so by enabling us to track the dynamics of a country's positioning in the WTN over years. On directed metabolic networks, our framework yields insights into preservation of enzyme function from the network wiring patterns rather than from sequence data. Overall, our methodology enables advanced analyses of directed networked data from any area of science, allowing domain-specific interpretation of a directed network's topology.

2.
Breast Cancer Res Treat ; 148(2): 455-62, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25248409

RESUMO

The goal of targeted cancer therapies is to specifically block oncogenic signalling, thus maximising efficacy, while reducing side-effects to patients. The gamma-secretase (GS) complex is an attractive therapeutic target in haematological malignancies and solid tumours with major pharmaceutical activity to identify optimal inhibitors. Within GS, nicastrin (NCSTN) offers an opportunity for therapeutic intervention using blocking monoclonal antibodies (mAbs). Here we explore the role of anti-nicastrin monoclonal antibodies, which we have developed as specific, multi-faceted inhibitors of proliferation and invasive traits of triple-negative breast cancer cells. We use 3D in vitro proliferation and invasion assays as well as an orthotopic and tail vail injection triple-negative breast cancer in vivo xenograft model systems. RNAScope assessed nicastrin in patient samples. Anti-NCSTN mAb clone-2H6 demonstrated a superior anti-tumour efficacy than clone-10C11 and the RO4929097 small molecule GS inhibitor, acting by inhibiting GS enzymatic activity and Notch signalling in vitro and in vivo. Confirming clinical relevance of nicastrin as a target, we report evidence of increased NCSTN mRNA levels by RNA in situ hybridization (RNAScope) in a large cohort of oestrogen receptor negative breast cancers, conferring independent prognostic significance for disease-free survival, in multivariate analysis. We demonstrate here that targeting NCSTN using specific mAbs may represent a novel mode of treatment for invasive triple-negative breast cancer, for which there are few targeted therapeutic options. Furthermore, we propose that measuring NCSTN in patient samples using RNAScope technology may serve as companion diagnostic for anti-NCSTN therapy in the clinic.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Anticorpos Monoclonais/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicoproteínas de Membrana/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Citometria de Fluxo , Humanos , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Integr Biol (Camb) ; 6(11): 1049-57, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25098752

RESUMO

Recent studies suggest a protective role of diabetes in the development of aneurysm, but the biological mechanisms behind this are still unknown. This type of association is not present in the case of diabetes and atherosclerosis despite similar risk factors for aneurysm and atherosclerosis. We postulate the existence of genes that disrupt the pathways needed for the onset of aneurysm in the presence of diabetes. Motivated by the significance of genetic interactions in understanding disease-disease associations, we tackle this problem by integrating protein-protein interaction and genetic interaction data, i.e., we examine the biological pathways related to the three diseases that contain genes involved in the following genetic interactions: one gene in a genetic interaction is part of a diabetes pathway, the other gene is part of an aneurysm, or an atherosclerosis pathway. We create a protein-protein interaction sub-network that contains disease pathways described above. We then use a "brokerage" measure - a topological measure that identifies proteins in this sub-network whose removal severely affects the interconnectedness of their neighbourhood, enabling such proteins to disrupt the pathway they are in. We identify a set of proteins with high brokerage values and find this set to be enriched in biological functions, including cell-matrix adhesion, which facilitates mechanisms that have already been suggested as possible causes of diabetes-aneurysm association. We further narrow down our set to 16 proteins that are involved in an aneurysm or an atherosclerosis pathway and are encoded by genes participating in genetic interactions with a gene in a diabetes pathway. This set is enriched in kinases and phosphorylation processes, with two pleiotropic kinases that are involved in both aneurysm and atherosclerosis pathways. Kinases can turn on or off proteins, explaining how functional changes of such proteins could result in the disruption of pathways. So if in an aneurysm-related pathway a gene is turned off, the onset of the disease could be prevented. However, mutations of pleiotropic genes could have effects only on one of the traits, which explains why pleiotropic kinases that are involved in both aneurysm and atherosclerosis pathways could disrupt aneurysm pathways explaining the reduced risk of aneurysm in diabetes patients, but not affect the atherosclerosis pathways.


Assuntos
Aneurisma/genética , Aterosclerose/genética , Diabetes Mellitus/genética , Modelos Genéticos , Mapas de Interação de Proteínas/genética , Proteínas Quinases/genética , Aneurisma/enzimologia , Aterosclerose/enzimologia , Diabetes Mellitus/enzimologia , Predisposição Genética para Doença , Humanos , Fosforilação/genética , Proteínas Quinases/metabolismo
4.
Biomed Res Int ; 2014: 527029, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24772427

RESUMO

Cardiovascular diseases (CVDs) are the leading health problem worldwide. Investigating causes and mechanisms of CVDs calls for an integrative approach that would take into account its complex etiology. Biological networks generated from available data on biomolecular interactions are an excellent platform for understanding interconnectedness of all processes within a living cell, including processes that underlie diseases. Consequently, topology of biological networks has successfully been used for identifying genes, pathways, and modules that govern molecular actions underlying various complex diseases. Here, we review approaches that explore and use relationships between topological properties of biological networks and mechanisms underlying CVDs.


Assuntos
Pesquisa Biomédica/métodos , Doenças Cardiovasculares , Bases de Dados Factuais , Modelos Cardiovasculares , Animais , Pesquisa Biomédica/tendências , Humanos
5.
PLoS One ; 8(8): e71537, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23977067

RESUMO

The structure of protein-protein interaction (PPI) networks has already been successfully used as a source of new biological information. Even though cardiovascular diseases (CVDs) are a major global cause of death, many CVD genes still await discovery. We explore ways to utilize the structure of the human PPI network to find important genes for CVDs that should be targeted by drugs. The hope is to use the properties of such important genes to predict new ones, which would in turn improve a choice of therapy. We propose a methodology that examines the PPI network wiring around genes involved in CVDs. We use the methodology to identify a subset of CVD-related genes that are statistically significantly enriched in drug targets and "driver genes." We seek such genes, since driver genes have been proposed to drive onset and progression of a disease. Our identified subset of CVD genes has a large overlap with the Core Diseasome, which has been postulated to be the key to disease formation and hence should be the primary object of therapeutic intervention. This indicates that our methodology identifies "key" genes responsible for CVDs. Thus, we use it to predict new CVD genes and we validate over 70% of our predictions in the literature. Finally, we show that our predicted genes are functionally similar to currently known CVD drug targets, which confirms a potential utility of our methodology towards improving therapy for CVDs.


Assuntos
Doenças Cardiovasculares/genética , Redes Reguladoras de Genes , Mapas de Interação de Proteínas/genética , Doenças Cardiovasculares/terapia , Estudos de Associação Genética , Humanos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...