Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biol ; 18(6): 733-42, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21700209

RESUMO

Attachment of retinal to opsin forms the chromophore N-retinylidene, which isomerizes during photoactivation of rhodopsins. To test whether isomerization is crucial, custom-tailored chromophores lacking the ß-ionone ring and any isomerizable bonds were incorporated in vivo into the opsin of a blind mutant of the eukaryote Chlamydomonas reinhardtii. The analogs restored phototaxis with the anticipated action spectra, ruling out the need for isomerization in photoactivation. To further elucidate photoactivation, responses to chromophores formed from naphthalene aldehydes were studied. The resulting action spectral shifts suggest that charge separation within the excited chromophore leads to electric field-induced polarization of nearby amino acid residues and altered hydrogen bonding. This redistribution of charge facilitates the reported multiple bond rotations and protein rearrangements of rhodopsin activation. These results provide insight into the activation of rhodopsins and related GPCRs.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Retinoides/química , Rodopsina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Ligação de Hidrogênio , Isomerismo , Luz , Dados de Sequência Molecular , Retinaldeído/química , Rodopsina/química , Alinhamento de Sequência
2.
Cell Motil Cytoskeleton ; 63(12): 758-77, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16986140

RESUMO

In response to light stimulation Chlamydomonas reinhardtii changes the beating frequency, beating pattern, and beating synchrony of the trans and cis cilia to steer the freely-swimming cell relative to light sources. To understand the cell steering behavior the impulse responses of the beating frequency and stroke velocity of each cilium have been obtained with high temporal resolution on cells held with a micropipette. Interestingly the response of each cilium is quite different. The trans cilium responds with less delay than the cis cilium for both beating frequency and stroke velocity. For light stimulation at 2 Hz, the critical cell-rotation frequency, both responses of the trans and cis cilia are about 180 degrees out of phase. The trans-cilium beating frequency response peaks at a stimulus frequency of 5-6 Hz, higher than the cis at 1-2 Hz. The stroke velocities of the trans and cis cilia have the same stimulus-frequency response (2 Hz), but the trans cilium has a shorter delay than the cis. The times to maximum response are much shorter than the time for a rotation of the cell. The use of two different approaches that enable the trans cilium to respond ahead of the cis for both the beating frequency and stroke velocity responses suggests the importance of both responses to phototaxis. Internal cell processing responsible for the time course of the responses is proposed.


Assuntos
Chlamydomonas reinhardtii/fisiologia , Cílios/fisiologia , Transdução de Sinal Luminoso/fisiologia , Locomoção/fisiologia , Estimulação Luminosa , Animais , Chlamydomonas reinhardtii/citologia , Chlamydomonas reinhardtii/efeitos da radiação , Cílios/ultraestrutura , Luz , Transdução de Sinal Luminoso/efeitos da radiação , Locomoção/efeitos da radiação , Dinâmica não Linear , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos da radiação
3.
Artigo em Inglês | MEDLINE | ID: mdl-17946810

RESUMO

The processing components and the dynamic signaling network that an individual cell uses to do signal integration and make decisions based on multiple sensory inputs are being identified in a well studied free-swimming unicellular green algal model organism, Chlamydomonas. It has many sensory photoreceptors and measurable behavior associated with its orienting and swimming with respect to light sources in its environment. Study of the dynamics of the beating of its two steering cilia reveals their complex specialization.


Assuntos
Movimento Celular/fisiologia , Chlamydomonas/fisiologia , Cílios/fisiologia , Modelos Biológicos , Células Fotorreceptoras/fisiologia , Transdução de Sinais/fisiologia , Animais , Movimento Celular/efeitos da radiação , Células Cultivadas , Chlamydomonas/efeitos dos fármacos , Cílios/efeitos da radiação , Simulação por Computador , Células Fotorreceptoras/efeitos da radiação , Transdução de Sinais/efeitos da radiação
4.
Eukaryot Cell ; 4(10): 1605-12, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16215167

RESUMO

When it is gliding, the unicellular euglenoid Peranema trichophorum uses activation of the photoreceptor rhodopsin to control the probability of its curling behavior. From the curled state, the cell takes off in a new direction. In a similar manner, archaea such as Halobacterium use light activation of bacterio- and sensory rhodopsins to control the probability of reversal of the rotation direction of flagella. Each reversal causes the cell to change its direction. In neither case does the cell track light, as known for the rhodopsin-dependent eukaryotic phototaxis of fungi, green algae, cryptomonads, dinoflagellates, and animal larvae. Rhodopsin was identified in Peranema by its native action spectrum (peak at 2.43 eV or 510 nm) and by the shifted spectrum (peak at 3.73 eV or 332 nm) upon replacement of the native chromophore with the retinal analog n-hexenal. The in vivo physiological activity of n-hexenal incorporated to become a chromophore also demonstrates that charge redistribution of a short asymmetric chromophore is sufficient for receptor activation and that the following isomerization step is probably not required when the rest of the native chromophore is missing. This property seems universal among the Euglenozoa, Plant, and Fungus kingdom rhodopsins. The rhodopsins of animals have yet to be studied in this respect. The photoresponse appears to be mediated by Ca2+ influx.


Assuntos
Comportamento Animal/fisiologia , Euglênidos , Evolução Molecular , Luz , Proteínas de Protozoários/metabolismo , Rodopsina/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Calcimicina/metabolismo , Cálcio/metabolismo , Quelantes/metabolismo , Quelantes/farmacologia , Ácido Egtázico/metabolismo , Ácido Egtázico/farmacologia , Euglênidos/anatomia & histologia , Euglênidos/fisiologia , Hexobarbital/química , Hexobarbital/metabolismo , Ionóforos/metabolismo , Células Fotorreceptoras de Invertebrados , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Rodopsina/química , Rodopsina/genética
5.
Cell Motil Cytoskeleton ; 61(2): 97-111, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15849714

RESUMO

With an instrument that can record the motion of both cilia of the unicellular alga Chlamydomonas reinhardtii for many hours, the behavioral differences of its two cilia have been studied to determine their specific role in phototaxis. The organism was held on a fixed micropipette with the plane of ciliary beating rotated into the imaging plane of a quadrant photodetector. The responses to square-wave light patterns of a wide range of temporal frequencies were used to characterize the responses of each cilium. Eighty-one cells were examined showing an unexpectedly diverse range of responses. Plausible common signals for the linear and nonlinear signals from the cell body are suggested. Three independent ciliary measures--the beat frequency, stroke velocity, and phasing of the two cilia--have been identified. The cell body communicates to the cilia the direction of phototaxis the cell desires to go, the absolute light intensity, and the appropriate graded transient response for tracking the light source. The complexity revealed by each measure of the ciliary response indicates many independent variables are involved in the net phototactic response. In spite of their morphological similarity, the two cilia of Chlamydomonas respond uniquely. Probably the signals from the cell body fan out to independent pathways in the cilia. Each cilium modifies the input in its own way. The change in the pattern of the effective and recovery strokes of each cilium associated with negative phototaxis has been demonstrated and its involvement in phototactic turning is described.


Assuntos
Chlamydomonas reinhardtii/fisiologia , Cílios/fisiologia , Transdução de Sinal Luminoso/fisiologia , Locomoção/fisiologia , Fototropismo/fisiologia , Animais , Chlamydomonas reinhardtii/citologia , Chlamydomonas reinhardtii/efeitos da radiação , Cílios/ultraestrutura , Processamento Eletrônico de Dados , Luz , Transdução de Sinal Luminoso/efeitos da radiação , Locomoção/efeitos da radiação , Dinâmica não Linear , Estimulação Luminosa , Fototropismo/efeitos da radiação , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos da radiação
6.
Cell Motil Cytoskeleton ; 61(2): 83-96, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15838839

RESUMO

The unicellular green alga Chlamydomonas reinhardtii steers through water with a pair of cilia (eukaryotic flagella). Long-term observation of the beating of its cilia with controlled stimulation is improving our understanding of how a cell responds to sensory inputs. Here we describe how to record ciliary motion continuously for long periods. We also report experiments on the network of intracellular signaling that connects the environment inputs with response outputs. Local spatial changes in ciliary response on the time scale of the underlying biochemical dynamics are observed. Near-infrared light monitors the cells held by a micropipette. This condition is tolerated well for hours, not interfering with ciliary beating or sensory transduction. A computer integrates the light stimulation of the eye of Chlamydomonas with the ciliary motion making possible long-term correlations. Measures of ciliary responses include the beating frequency, stroke velocity, and stroke duration of each cilium, and the relative phase of the cis and trans cilia. The stationarity and dependence of the system on light intensity was investigated. About 150,000,000 total beat cycles and up to 8 h on one cell have been recorded. Each beat cycle is resolved so that each asynchronous beat is detected. Responses extend only a few hundred milliseconds, but there is a persistence of momentary changes that last much longer. Interestingly, we see a response that is linear with absolute light intensity as well as different kinds of response that are clearly nonlinear, implying two signaling pathways from the cell body to the cilia.


Assuntos
Chlamydomonas reinhardtii/fisiologia , Cílios/fisiologia , Processamento Eletrônico de Dados/métodos , Eletrônica/métodos , Locomoção/fisiologia , Microscopia/métodos , Animais , Comportamento Animal/fisiologia , Comportamento Animal/efeitos da radiação , Chlamydomonas reinhardtii/citologia , Chlamydomonas reinhardtii/efeitos da radiação , Cílios/ultraestrutura , Processamento Eletrônico de Dados/instrumentação , Eletrônica/instrumentação , Olho/efeitos da radiação , Luz , Transdução de Sinal Luminoso/fisiologia , Transdução de Sinal Luminoso/efeitos da radiação , Iluminação/instrumentação , Iluminação/métodos , Locomoção/efeitos da radiação , Microscopia/instrumentação , Dinâmica não Linear , Estimulação Luminosa , Fototropismo/fisiologia , Fototropismo/efeitos da radiação , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...