Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Technol ; : 1-11, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37440597

RESUMO

ABSTRACTAnaerobic digestion (AD) relies on the cooperation of specific microbial communities, making it susceptible to process disruptions that could impact biogas production. In this regard, this study presents a technological solution based on the Arduino platform, in the form of a simple online monitoring system that can track the produced biogas profile, named as biogas analyzer module (BAM). The applicability of the BAM focused on monitoring the biogas produced from sugarcane vinasse inoculated with sewage sludge biodigestion processed in mesophilic conditions (38 oC), in a pH range of 6.5-7.5, and following a three-stage operational model: (i) an adaptation (168 h), (ii) complete mixing (168 h), and (iii) bio-stimulation with glycerol (192 h). Then, the lab-made BAM was used to trace the produced biogas profile, which registered a total biogas volume of 8,719.86 cm3 and biomethane concentration of 95.79% (vol.), removing 90.8% (vol) of carbon dioxide (CO2) and 65.2% (vol) of hydrogen sulfide (H2S). In conclusion, the results ensured good accuracy and efficiency to the device created by comparisons with established standards (chromatographic and colorimetric methods), as well as the cost reduction. The developed device would likely be six times cheaper than what is available in the market.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA