Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 13(4)2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33672000

RESUMO

The utilization of waste-paper-biomass for extraction of important α-cellulose biopolymer, and modification of extracted α-cellulose for application in enzyme immobilization can be extremely vital for green circular bio-economy. Thus, in this study, α-cellulose fibers were super-magnetized (Fe3O4), grafted with chitosan (CTNs), and thiol (-SH) modified for laccase immobilization. The developed material was characterized by high-resolution transmission electron microscopy (HR-TEM), HR-TEM energy dispersive X-ray spectroscopy (HR-TEM-EDS), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FT-IR) analyses. Laccase immobilized on α-Cellulose-Fe3O4-CTNs (α-Cellulose-Fe3O4-CTNs-Laccase) gave significant activity recovery (99.16%) and laccase loading potential (169.36 mg/g). The α-Cellulose-Fe3O4-CTNs-Laccase displayed excellent stabilities for temperature, pH, and storage time. The α-Cellulose-Fe3O4-CTNs-Laccase applied in repeated cycles shown remarkable consistency of activity retention for 10 cycles. After the 10th cycle, α-Cellulose-Fe3O4-CTNs possessed 80.65% relative activity. Furthermore, α-Cellulose-Fe3O4-CTNs-Laccase shown excellent degradation of pharmaceutical contaminant sulfamethoxazole (SMX). The SMX degradation by α-Cellulose-Fe3O4-CTNs-Laccase was found optimum at incubation time (20 h), pH (3), temperatures (30 °C), and shaking conditions (200 rpm). Finally, α-Cellulose-Fe3O4-CTNs-Laccase gave repeated degradation of SMX. Thus, this study presents a novel, waste-derived, highly capable, and super-magnetic nanocomposite for enzyme immobilization applications.

2.
Int J Biol Macromol ; 178: 464-476, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33662416

RESUMO

Polymer-clay nanocomposite hydrogel films (PCNCHFs) were prepared from caboxymethyl cellulose, polyvinylpyrrolidone, agar and nanosepiolite clay (0, 0.3, 0.5, 0.7, 0.9 and 1.5% reinforcement) by treating thermally in a simple, rapid, and inexpensive route. The PCNCHFs and its 5-fluorouracil (FU)-loaded composites (PCNCHFs@FU) were tested for FU release and characterized by FTIR, XRD, FE-SEM, EDX, DSC, and TGA analyses to investigate their structural, morphological, and thermal properties. The nanosepiolite-loaded polymer composites (PCNCHF1 to PCNCHF5) exhibited higher tensile strength than the pristine polymer hydrogel (PCNCHF0); consequently, the thermal properties (glass- and melting-transition) were improved. The PCNCHFs@FU demonstrated prolonged FU release at pH 7.4 for 32 h. The biocompatibility of PCNCHFs was tested against human skin fibroblast (CCDK) cells. The viability of cells exposed to all PCNCHFs was >95% after 72 h of culture. The live/dead assay show the proliferation of fibroblast cells, confirming the biocompatibility of the hydrogels. The pH-sensitive PCNCHFs@FU release could be suitable for drug release in cancer therapy, and the developed PCNCHFs may also be useful for tissue engineering, food packaging, and other biological applications.


Assuntos
Carboximetilcelulose Sódica/química , Portadores de Fármacos/química , Fluoruracila , Hidrogéis/química , Silicatos de Magnésio/química , Nanocompostos/química , Fluoruracila/química , Fluoruracila/farmacocinética
3.
Polymers (Basel) ; 12(10)2020 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-32992644

RESUMO

A surface-engineered nano-support for enzyme laccase-immobilization was designed by grafting the surface of halloysite nanotubes (HNTs) with Fe3O4 nanoparticles and chitosan. Herein, HNTs were magnetized (HNTs-M) by a cost-effective reduction-precipitation method. The synthesized HNTs-M were grafted with 0.25%, 0.5%, 1%, and 2% chitosan (HNTs-M-chitosan), respectively. Synthesized HNTs-M-chitosan (0.25%), HNTs-M-chitosan (0.5%), HNTs-M-chitosan (1%) and HNTs-M-chitosan (2%) were linked with glutaraldehyde (GTA) for laccase immobilization. Among these formulations, HNTs-M-chitosan (1%) exhibited the highest laccase immobilization with 95.13% activity recovery and 100.12 mg/g of laccase loading. The optimized material was characterized thoroughly by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), X-ray powder diffraction (XRD), thermal gravimetric analysis (TGA), and vibrating sample magnetometer (VSM) analysis. The immobilized laccase (HNTs-M-chitosan (1%)-GTA-Laccase) exhibited higher pH, temperature, and storage stabilities. The HNTs-M-chitosan (1%)-GTA-Laccase possesses excellent reusability capabilities. At the end of 10 cycles of the reusability experiment, HNTs-M-chitosan (1%)-GTA-Laccase retained 59.88% of its initial activity. The immobilized laccase was utilized for redox-mediated degradation of sulfamethoxazole (SMX), resulting in 41%, 59%, and 62% degradation of SMX in the presence of 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), guaiacol (GUA), and syringaldehyde (SA), respectively. Repeated SMX degradation (57.10% after the sixth cycle) confirmed the potential of HNTs-M-chitosan (1%)-GTA-Laccase for environmental pollutant degradation. Thus, we successfully designed chitosan-based, rapidly separable super-magnetic nanotubes for efficacious enhancement of laccase biocatalysis, which can be applied as nano-supports for other enzymes.

4.
Nanomaterials (Basel) ; 10(12)2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-33419305

RESUMO

This study focuses on the development of a nanosupport based on halloysite nanotubes (HNTs), Fe3O4 nanoparticles (NPs), and thiolated chitosan (CTs) for laccase immobilization. First, HNTs were modified with Fe3O4 NPs (HNTs-Fe3O4) by the coprecipitation method. Then, the HNTs-Fe3O4 surface was tuned with the CTs (HNTs-Fe3O4-CTs) by a simple refluxing method. Finally, the HNTs- Fe3O4-CTs surface was thiolated (-SH) (denoted as; HNTs- Fe3O4-CTs-SH) by using the reactive NHS-ester reaction. The thiol-modified HNTs (HNTs- Fe3O4-CTs-SH) were characterized by FE-SEM, HR-TEM, XPS, XRD, FT-IR, and VSM analyses. The HNTs-Fe3O4-CTs-SH was applied for the laccase immobilization. It gave excellent immobilization of laccase with 100% activity recovery and 144 mg/g laccase loading capacity. The immobilized laccase on HNTs-Fe3O4-CTs-SH (HNTs-Fe3O4-CTs-S-S-Laccase) exhibited enhanced biocatalytic performance with improved thermal, storage, and pH stabilities. HNTs-Fe3O4-CTs-S-S-Laccase gave outstanding repeated cycle capability, at the end of the 15th cycle, it kept 61% of the laccase activity. Furthermore, HNTs-Fe3O4-CTs-S-S-Laccase was applied for redox-mediated removal of textile dye DR80 and pharmaceutical compound ampicillin. The obtained result marked the potential of the HNTs-Fe3O4-CTs-S-S-Laccase for the removal of hazardous pollutants. This nanosupport is based on clay mineral HNTs, made from low-cost biopolymer CTs, super-magnetic in nature, and can be applied in laccase-based decontamination of environmental pollutants. This study also gave excellent material HNTs-Fe3O4-CTs-SH for other enzyme immobilization processes.

5.
Artif Cells Nanomed Biotechnol ; 46(1): 211-222, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28612655

RESUMO

This study first time reports the novel synthesis of silver nanoparticles (AgNPs) using a Punica granatum leaf extract (PGE). The synthesized AgNPs were characterized by various analytical techniques including UV-Vis, Fourier transform infrared (FTIR), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy and energy-dispersive spectra (FESEM-EDS) and high-resolution transmission electron microscopy (HRTEM). FTIR analysis revealed that the involvement of biological macromolecules of P. granatum leaf extract were distributed and involved in the synthesis and stabilization of AgNPs. A surface-sensitive technique of XPS was used to analyse the composition and oxidation state of synthesized AgNPs. The analytical results confirmed that the AgNPs were crystalline in nature with spherical shape. The zeta potential study revealed that the surface charge of synthesized AgNPs was highly negative (-26.6 mV) and particle size distribution was ranging from ∼35 to 60 nm and the average particle size was about 48 nm determined by dynamic light scattering (DLS). The PGE-AgNPs antidiabetic potential exhibited effective inhibition against α-amylase and α-glucosidase (IC50; 65.2 and 53.8 µg/mL, respectively). The PGE-AgNPs showed a dose-dependent response against human liver cancer cells (HepG2) (IC50; 70 µg/mL) indicating its greater efficacy in killing cancer cells. They also possessed in vitro free radical-scavenging activity in terms of ABTS (IC50; 52.2 µg/mL) and DPPH (IC50; 67.1 µg/mL) antioxidant activity. PGE-AgNPs displayed strong antibacterial activity and potent synergy with standard antibiotics against pathogenic bacteria. Thus, synthesized PGE-AgNPs show potential biomedical and industrial applications.


Assuntos
Neoplasias Hepáticas/patologia , Lythraceae/química , Nanopartículas Metálicas , Extratos Vegetais/química , Folhas de Planta/química , Prata/química , Prata/farmacologia , Antibacterianos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Benzotiazóis/química , Compostos de Bifenilo/química , Técnicas de Química Sintética , Sinergismo Farmacológico , Células Hep G2 , Humanos , Hipoglicemiantes/síntese química , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Picratos/química , Ácidos Sulfônicos/química
6.
Environ Sci Pollut Res Int ; 25(11): 10392-10406, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28699009

RESUMO

In recent years, the use of nanoparticle-based antimicrobials has been increased due to many advantages over conventional agrochemicals. This study investigates the utilization of common medicinal plant dandelion, Taraxacum officinale, for the synthesis of silver nanoparticles (TOL-AgNPs). AgNPs were evaluated for antimicrobial activity against two important phytopathogens, Xanthomonas axonopodis and Pseudomonas syringae. The morphology, size, and structure of TOL-AgNPs were characterized using UV-visible spectroscopy and X-ray diffraction (XRD). Fourier transform infrared spectroscopy (FT-IR) showed the presence of phytochemicals involved during synthesis of NPs. High-resolution transmission electron microscopy (HR-TEM) analysis shed light on the size of monodispersed spherical AgNPs ranging between 5 and 30 nm, with an average particle size of about 15 nm. The TOL-AgNPs (at 20 µg/mL concentration) showed significant antibacterial activity with significant growth inhibition of phytopathogens X. axonopodis (22.0 ± 0.84 mm) and P. syringae (19.5 ± 0.66 mm). The synthesized AgNPs had higher antibacterial activity in comparison with commercial AgNPs. Synergistic assays with standard antibiotics revealed that nanoformulations with tetracycline showed better broad-spectrum efficiency to control phytopathogens. They also possessed significant antioxidant potential in terms of ABTS (IC50 = 45.6 µg/mL), DPPH (IC50 = 56.1 µg/mL), and NO (IC50 = 55.2 µg/mL) free radical scavenging activity. The TOL-AgNPs showed high cytotoxic effect against human liver cancer cells (HepG2). Overall, dandelion-mediated AgNPs synthesis can represent a novel approach to develop effective antimicrobial and anticancer drugs with a cheap and eco-friendly nature.


Assuntos
Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Nanopartículas Metálicas/química , Prata/química , Taraxacum/efeitos dos fármacos , Antibacterianos/química , Anti-Infecciosos/química , Antineoplásicos/química , Antioxidantes/química , Medicina Herbária , Humanos , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Extratos Vegetais/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
7.
3 Biotech ; 7(3): 163, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28660456

RESUMO

Nocardiopsis sp. KNU was found to degrade various lignocellulosic waste materials, namely, sorghum husk, sugarcane tops and leaves, wheat straw, and rice husk very efficiently. The strain was found to produce high amounts of cellulase and hemicellulase. Augmentation of cotton seed cake as an organic nitrogen source revealed inductions in activities of endoglucanase, glucoamylase, and xylanase up to 70.03, 447.89, and 275.10 U/ml, respectively. Nonionic surfactant Tween-80 addition was found to enhance the activity of endoglucanase enzyme. Cellulase produced by Nocardiopsis sp. KNU utilizing sorghum husk as a substrate was found to retain its stability in various surfactants up to 90%. The produced enzyme was further tested for saccharification of mild alkali pretreated rice husk. The changes in morphology and functional group were analyzed using scanning electron microscopy and Fourier transform infrared spectroscopy. Enzymatic saccharification confirmed the hydrolytic potential of crude cellulase. The hydrolysate products were analyzed by high-performance thin layer chromatography.

8.
Artigo em Inglês | MEDLINE | ID: mdl-26606256

RESUMO

The present study consists of the preparation of activated carbon from peach stone (PSAC) by H4P2O7 activation and its detailed characterization. The influence of different activants and various operational conditions including; soaking time, activation time, and activation temperature during PSAC preparation were systematically investigated. The chemical properties and morphology of prepared activated carbon was characterized by various analytical techniques (FTIR, SEM and EDX). TG-DTA analysis showed that the pore development of PSAC was significant at temperatures > 450°C. The prepared PSAC were utilized for the rapid removal and adsorption of Acid Red 18 (AR18) from aqueous solution that follows pseudo-second-order kinetics. The Langmuir isotherm model corresponded well with equilibrium data than the others, implying that the adsorption of AR18 onto prepared PSAC from the aqueous solutions proceeds by a monolayer formation. Thermodynamic investigations showed that the adsorption process is an exothermic and spontaneous process. During reusability studies, PSAC showed complete removal of AR18 upto seventh cycle increasing its practical applicability. Finally the prepared PSAC showed the best adsorptive capacity as compared to commercial AC for dye removal from actual industrial wastewater. This confers the possibility of applying PSAC economically viable option for the treatment of industrial wastewaters containing dye pollutants using suitable reactor.

9.
Artigo em Inglês | MEDLINE | ID: mdl-25560264

RESUMO

Complete decolorization and detoxification of Reactive Orange 4 within 5 h (pH 6.6, at 30°C) by isolated Lysinibacillus sp. RGS was observed. Significant reduction in TOC (93%) and COD (90%) was indicative of conversion of complex dye into simple products, which were identified as naphthalene moieties by various analytical techniques (HPLC, FTIR, and GC-MS). Supplementation of agricultural waste extract considered as better option to make the process cost effective. Oxido-reductive enzymes were found to be involved in the degradation mechanism. Finally Loofa immobilized Lysinibacillus sp. cells in a fixed-bed bioreactor showed significant decolorization with reduction in TOC (51 and 64%) and COD (54 and 66%) for synthetic and textile effluent at 30 and 35 mL h(-1) feeding rate, respectively. The degraded metabolites showed non-toxic nature revealed by phytotoxicity and photosynthetic pigments content study for Sorghum vulgare and Phaseolus mungo. In addition nitrogen fixing and phosphate solubilizing microbes were less affected in treated wastewater and thus the treated effluent can be used for the irrigation purpose. This work could be useful for the development of efficient and ecofriendly technologies to reduce dye content in the wastewater to permissible levels at affordable cost.


Assuntos
Compostos Azo/metabolismo , Bacillaceae/metabolismo , Reatores Biológicos/microbiologia , Corantes/metabolismo , Resíduos Industriais , Ésteres do Ácido Sulfúrico/metabolismo , Eliminação de Resíduos Líquidos/métodos , Biodegradação Ambiental , Têxteis , Águas Residuárias
10.
Appl Biochem Biotechnol ; 174(8): 2801-17, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25374139

RESUMO

Phanerochaete chrysosporium was evaluated for cellulase and hemicellulase production using various agricultural wastes under solid state fermentation. Optimization of various environmental factors, type of substrate, and medium composition was systematically investigated to maximize the production of enzyme complex. Using grass powder as a carbon substrate, maximum activities of endoglucanase (188.66 U/gds), exoglucanase (24.22 U/gds), cellobiase (244.60 U/gds), filter paperase (FPU) (30.22 U/gds), glucoamylase (505.0 U/gds), and xylanase (427.0 U/gds) were produced under optimized conditions. The produced crude enzyme complex was employed for hydrolysis of untreated and mild acid pretreated rice husk. The maximum amount of reducing sugar released from enzyme treated rice husk was 485 mg/g of the substrate. Finally, the hydrolysates of rice husk were used for hydrogen production by Clostridium beijerinckii. The maximum cumulative H2 production and H2 yield were 237.97 mL and 2.93 mmoL H2/g of reducing sugar, (or 2.63 mmoL H2/g of cellulose), respectively. Biohydrogen production performance obtained from this work is better than most of the reported results from relevant studies. The present study revealed the cost-effective process combining cellulolytic enzymes production under solid state fermentation (SSF) and the conversion of agro-industrial residues into renewable energy resources.


Assuntos
Biocombustíveis , Celulase/química , Clostridium beijerinckii/crescimento & desenvolvimento , Proteínas Fúngicas/química , Glicosídeo Hidrolases/química , Hidrogênio/metabolismo , Phanerochaete/enzimologia , Resíduos Sólidos , Agricultura , Eliminação de Resíduos de Serviços de Saúde/métodos
11.
Artigo em Inglês | MEDLINE | ID: mdl-25137542

RESUMO

The photocatalytic degradation of phenol in aqueous suspension using commercial TiO2 powder (Degussa P-25) irradiated with UV light was investigated. Photodegradation was compared using a photocatalyst (TiO2 alone), direct photolysis (UV alone) and TiO2/UV in a single batch reactor with mercury lamp irradiation. The study focused on the influence of various operating parameters on phenol treatment efficiency, including catalyst dosage, initial concentration of phenol, temperature, pH and change in pH were systematically investigated. The highest phenol degradation rate was obtained at pH 9.0, temperature 60°C and catalyst dose of 2 g L(-1) with higher mineralization efficiency (in terms of TOC reduction). Experimental results showed that under optimized conditions the phenol removal efficiency was 98% and 100% for the TiO2/UV and TiO2/UV/H2O2 system, respectively. No significant effect on addition of chloride and metal ions was observed. Photodegradation of phenol followed first-order kinetics. To test whether the phenol removal was possible for wastewater using a TiO2/UV system, the degradation study was conducted with the real obtained wastewater. The removal of phenol from obtained wastewater and the synthetic wastewater containing phenol was comparable. The TiO2/UV system developed here is expected to be useful for the treatment of wastewater containing phenol.


Assuntos
Peróxido de Hidrogênio/química , Fenóis/química , Titânio/efeitos da radiação , Raios Ultravioleta , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Catálise , Concentração de Íons de Hidrogênio , Cinética , Fotólise , Titânio/química , Águas Residuárias
12.
Environ Sci Pollut Res Int ; 21(18): 11075-85, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24888611

RESUMO

Lysinibacillus sp. RGS degrades sulfonated azo dye Reactive Orange 16 (RO16) efficiently. Superoxide dismutase and catalase activity were tested to study the response of Lysinibacillus sp. RGS to the oxidative stress generated by RO16. The results demonstrated that oxidative stress enzymes not only protect the cell from oxidative stress but also has a probable role in decolorization along with an involvement of oxidoreductive enzymes. Formation of three different metabolites after degradation of RO16 has been confirmed by GC-MS analysis. FTIR analysis verified the degradation of functional groups of RO16, and HPTLC confirmed the removal of auxochrome group from the RO16 after degradation. Toxicity studies confirmed the genotoxic, cytotoxic, and phytotoxic nature of RO16 and the formation of less toxic products after the treatment of Lysinibacillus sp. RGS. Therefore, Lysinibacillus sp. RGS has a better perspective of bioremediation for textile wastewater treatment.


Assuntos
Compostos Azo/farmacologia , Bacillaceae/metabolismo , Corantes/farmacologia , Estresse Oxidativo , Poluentes Químicos da Água/farmacologia , Compostos Azo/metabolismo , Bacillaceae/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Catalase/metabolismo , Corantes/metabolismo , Indução Enzimática , Cromatografia Gasosa-Espectrometria de Massas , Regulação Bacteriana da Expressão Gênica , Concentração de Íons de Hidrogênio , Cebolas/efeitos dos fármacos , Cebolas/crescimento & desenvolvimento , Oxirredução , Phaseolus/efeitos dos fármacos , Phaseolus/crescimento & desenvolvimento , Superóxido Dismutase/metabolismo , Águas Residuárias/química , Poluentes Químicos da Água/metabolismo
13.
J Environ Health Sci Eng ; 12(1): 151, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25649265

RESUMO

Isolated Enterococcus faecalis YZ 66 strain shows ability to decolorize various industrial dyes among which, it showed complete decolorization and degradation of toxic, sulfonated recalcitrant diazo dye Direct Red 81 (50 mg/L) within 1.5 h of incubation under static anoxic condition. The optimum pH and temperature for decolorization was 7.0 and 40°C, respectively. Significant induction in the activity of intracellular oxidoreductive enzymes suggested its involvement in the decolorization of Direct Red 81. The biodegradation of Direct Red 81 was monitored by UV-Visible, FT-IR spectroscopy and HPLC. The final products were characterized by GC-MS and possible pathway of the degradation of the dye was proposed. The phytotoxicity assay (with respect to plants Sorghum vulgare and Phaseolus mungo) revealed that the degradation of Direct Red 81 produced nontoxic metabolites. Finally E. faecalis was employed to decolorize actual industrial effluent showing decolorization (in terms of ADMI value) with moderate COD and BOD reduction. Moreover the result increases the applicability of the strain for the treatment of industrial wastewaters containing dye pollutants.

14.
J Biosci Bioeng ; 115(6): 658-67, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23321576

RESUMO

A novel bacterium was isolated from the soil of Ichalkaranji textile industrial area. Through 16S rRNA sequence matching and morphological observation it was identified as Lysinibacillus sp. RGS. This strain has ability to decolorize various industrial dyes among which, it showed complete decolorization and degradation of toxic sulfonated azo dye C.I. Remazol Red (at 30°C, pH 7.0, under static condition) with higher chemical oxygen demand (COD) reduction (92%) within 6 h of incubation. Various parameters like agitation, pH, temperature and initial dye concentrations were optimized to develop faster decolorization process. The supplementation of cheap co-substrates (e.g., extracts of agricultural wastes) could enhance the decolorization performance of Lysinibacillus sp. RGS. Induction in oxidoreductive enzymes presumably indicates involvement of these enzymes in the decolorization/degradation process. Analytical studies of the extracted metabolites confirmed the significant degradation of Remazol Red into various metabolites. The phytotoxicity assay (with respect to plants Phaseolus mungo and Sorghum vulgare) revealed that the degradation of Remazol Red produced nontoxic metabolites. Finally Lysinibacillus sp. RGS was applied to decolorize mixture of dyes and actual industrial effluent showing 87% and 72% decolorization (in terms of decrease in ADMI value) with 69% and 62% COD reduction within 48 h and 96 h, respectively. The foregoing result increases the applicability of the strain for the treatment of industrial wastewaters containing dye pollutants.


Assuntos
Bacillaceae/enzimologia , Corantes/metabolismo , Resíduos Industriais , Naftalenossulfonatos/metabolismo , Têxteis , Triazinas/metabolismo , Águas Residuárias , Poluentes Químicos da Água/metabolismo , Bacillaceae/crescimento & desenvolvimento , Bacillaceae/isolamento & purificação , Sequência de Bases , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio , Corantes/química , Corantes/toxicidade , Dados de Sequência Molecular , Naftalenossulfonatos/química , Naftalenossulfonatos/toxicidade , Triazinas/química , Triazinas/toxicidade , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade
15.
Biotechnol Prog ; 26(2): 406-16, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19941342

RESUMO

Among four cellulolytic microorganisms examined, Cellulomonas biazotea NCIM-2550 can grow on various cellulosic substrates and produce reducing sugar. The activity of cellulases (endoglucanase, exoglucanase, and cellobiase), xylanase, amylase, and lignin class of enzymes produced by C. biazotea was mainly present extracellularly and the enzyme production was dependent on cellulosic substrates (carboxymethyl cellulose [CMC], sugarcane bagasse [SCB], and xylan) used for growth. Effects of physicochemical conditions on cellulolytic enzyme production were systematically investigated. Using MnCl(2) as a metal additive significantly induces the cellulase enzyme system, resulting in more reducing sugar production. The efficiency of fermentative conversion of the hydrolyzed SCB and xylan into clean H(2) energy was examined with seven H(2)-producing pure bacterial isolates. Only Clostridiumbutyricum CGS5 exhibited efficient H(2) production performance with the hydrolysate of SCB and xylan. The cumulative H(2) production and H(2) yield from using bagasse hydrolysate (initial reducing sugar concentration = 1.545 g/L) were approximately 72.61 mL/L and 2.13 mmol H(2)/g reducing sugar (or 1.91 mmol H(2)/g cellulose), respectively. Using xylan hydrolysate (initial reducing sugar concentration = 0.345 g/L) as substrate could also attain a cumulative H(2) production and H(2) yield of 87.02 mL/L and 5.03 mmol H(2)/g reducing sugar (or 4.01 mmol H(2)/g cellulose), respectively.


Assuntos
Celulases/metabolismo , Cellulomonas/enzimologia , Celulose/metabolismo , Hidrogênio/metabolismo , Carboximetilcelulose Sódica/química , Carboximetilcelulose Sódica/metabolismo , Celulases/biossíntese , Cellulomonas/metabolismo , Celulose/química , Cloretos/química , Clostridium butyricum , Fermentação , Compostos de Manganês/química , Xilanos/química , Xilanos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...