Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 13(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37238213

RESUMO

BACKGROUND: IgA vasculitis (IgAV) is the most common form of childhood vasculitis. A better understanding of its pathophysiology is required to identify new potential biomarkers and treatment targets. OBJECTIVE: to assess the underlying molecular mechanisms in the pathogenesis of IgAV using an untargeted proteomics approach. METHODS: Thirty-seven IgAV patients and five healthy controls were enrolled. Plasma samples were collected on the day of diagnosis before any treatment was initiated. We used nano-liquid chromatography-tandem mass spectrometry (nLC-MS/MS) to investigate the alterations in plasma proteomic profiles. For the bioinformatics analyses, databases including Uniprot, PANTHER, KEGG, Reactome, Cytoscape, and IntAct were used. RESULTS: Among the 418 proteins identified in the nLC-MS/MS analysis, 20 had significantly different expressions in IgAV patients. Among them, 15 were upregulated and 5 were downregulated. According to the KEGG pathway and function classification analysis, complement and coagulation cascades were the most enriched pathways. GO analyses showed that the differentially expressed proteins were mainly involved in defense/immunity proteins and the metabolite interconversion enzyme family. We also investigated molecular interactions in the identified 20 proteins of IgAV patients. We extracted 493 interactions from the IntAct database for the 20 proteins and used Cytoscape for the network analyses. CONCLUSION: Our results clearly suggest the role of the lectin and alternate complement pathways in IgAV. The proteins defined in the pathways of cell adhesion may serve as biomarkers. Further functional studies may lead the way to better understanding of the disease and new therapeutic options for IgAV treatment.

2.
Langmuir ; 39(9): 3400-3410, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36786472

RESUMO

This study presents the electrostatic repulsive features of electrochemically fabricated titanium dioxide nanotube (NT)-based membranes with different surface nanomorphologies in cross-flow biofiltration applications while maintaining a creatinine clearance above 90%. Although membranes exhibit antifouling behavior, their blood protein rejection can still be improved. Due to the electrostatically negative charge of the hexafluorotitanate moiety, the fabricated biocompatible, superhydrophilic, free-standing, and amorphous ceramic nanomembranes showed that about 20% of negatively charged 66 kDa blood albumin was rejected by the membrane with ∼100 nm pores. As the nanomorphology of the membrane was shifted from NTs to nanowires by varying fabrication parameters, pure water flux and bovine serum albumin (BSA) rejection performance were reduced, and the membrane did not lose its antifouling behavior. Herein, nanomembranes with different surface nanomorphologies were fabricated by a multi-step anodic oxidation process and characterized by scanning electron microscopy, atomic force microscopy, water contact angle analysis, X-ray diffraction, and energy-dispersive X-ray spectroscopy. The membrane performance of samples was measured in 3D printed polyethylene terephthalate glycol flow cells replicating implantable artificial kidney models to determine their blood toxin removal and protein loss features. In collected urine mimicking samples, creatinine clearances and BSA rejections were measured by the spectrophotometric Jaffe method and high-performance liquid chromatography.


Assuntos
Nanotubos , Soroalbumina Bovina , Creatinina , Eletricidade Estática , Soroalbumina Bovina/química , Água/química , Membranas Artificiais
3.
Acta Biomater ; 73: 263-274, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29656073

RESUMO

Osteoarthritis (OA) is a condition where tissue function is lost through a combination of secondary inflammation and deterioration in articular cartilage. One of the most common causes of OA is age-related tissue impairment because of wear and tear due to mechanical erosion. Hyaluronic acid-based viscoelastic supplements have been widely used for the treatment of knee injuries. However, the current formulations of hyaluronic acid are unable to provide efficient healing and recovery. Here, a nanofiber-hyaluronic acid membrane system that was prepared by using a quarter of the concentration of commercially available hyaluronic acid supplement, Hyalgan®, was used for the treatment of an osteoarthritis model, and Synvisc®, which is another commercially available hyaluronic acid containing viscoelastic supplement, was used as a control. The results show that this system provides efficient protection of arthritic cartilage tissue through the preservation of cartilage morphology with reduced osteophyte formation, protection of the subchondral region from deterioration, and maintenance of cartilage specific matrix proteins in vivo. In addition, the hybrid nanofiber membrane enabled chondrocyte encapsulation and provided a suitable culturing environment for stem cell growth in vitro. Overall, our results suggest that this hybrid nanofibrous scaffold provides a potential platform the treatment of OA. STATEMENT OF SIGNIFICANCE: Osteoarthritis is a debilitating joint disease affecting millions of people worldwide. It occurs especially in knees due to aging, sport injuries or obesity. Although hyaluronic acid-based viscoelastic supplements are widely used, there is still no effective treatment method for osteoarthritis, which necessitates surgical operation as an only choice for severe cases. Therefore, there is an urgent need for efficient therapeutics. In this study, a nanofiber-HA membrane system was developed for the efficient protection of arthritic cartilage tissue from degeneration. This hybrid nanofiber system provided superior therapeutic activity at a relatively lower concentration of hyaluronic acid than Hyalgan® and Synvisc® gels, which are currently used in clinics. This work demonstrates for the first time that this hybrid nanofiber membrane scaffold can be utilized as a potential candidate for osteoarthritis treatment.


Assuntos
Cartilagem Articular/efeitos dos fármacos , Ácido Hialurônico/administração & dosagem , Nanofibras/administração & dosagem , Osteoartrite/terapia , Peptídeos/administração & dosagem , Animais , Cartilagem Articular/química , Sobrevivência Celular , Condrócitos/citologia , Cromatografia Líquida , Dicroísmo Circular , Membro Posterior/patologia , Inflamação , Masculino , Espectrometria de Massas , Células-Tronco Mesenquimais/metabolismo , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Oscilometria , Osteoartrite/fisiopatologia , Ratos , Ratos Sprague-Dawley , Reologia , Estresse Mecânico , Alicerces Teciduais
4.
Bioconjug Chem ; 28(5): 1491-1498, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28441471

RESUMO

Peptide nanomaterials have received a great deal of interest in drug-delivery applications due to their biodegradability, biocompatibility, suitability for large-scale synthesis, high drug-loading capacities, targeting ability, and ordered structural organization. The covalent conjugation of drugs to peptide backbones results in prolonged circulation time and improved stability of drugs. Therapeutic efficacy of gemcitabine, which is used for breast cancer treatment, is severely compromised due to its rapid plasma degradation. Its hydrophilic nature poses a challenge for both its efficient encapsulation into nanocarrier systems and its sustained release property. Here, we designed a new peptide prodrug molecule for the anticancer drug gemcitabine, which was covalently conjugated to the C-terminal of 9-fluorenylmethoxy carbonyl (Fmoc)-protected glycine. The prodrug was further integrated into peptide nanocarrier system through noncovalent interactions. A pair of oppositely charged amyloid-inspired peptides (Fmoc-AIPs) were exploited as components of the drug-carrier system and self-assembled into one-dimensional nanofibers at physiological conditions. The gemcitabine integrated nanoprodrug carrier system exhibited slow release and reduced the cellular viability of 4T1 breast cancer cell line in a time- and concentration-dependent manner.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Portadores de Fármacos/química , Nanoestruturas/química , Pró-Fármacos/farmacologia , Amiloide/química , Antimetabólitos Antineoplásicos/química , Neoplasias da Mama/patologia , Sobrevivência Celular , Desoxicitidina/química , Desoxicitidina/farmacologia , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Nanofibras/química , Pró-Fármacos/química , Células Tumorais Cultivadas , Gencitabina
5.
ACS Appl Mater Interfaces ; 9(19): 16035-16042, 2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28445638

RESUMO

The ability of dendritic cells to coordinate innate and adaptive immune responses makes them essential targets for vaccination strategies. Presentation of specific antigens by dendritic cells is required for the activation of the immune system against many pathogens and tumors, and nanoscale materials can be functionalized for active targeting of dendritic cells. In this work, we integrated an immunogenic, carbohydrate melanoma-associated antigen-mimetic GM3-lactone molecule into mannosylated peptide amphiphile nanofibers to target dendritic cells through DC-SIGN receptor. Based on morphological and functional analyses, when dendritic cells were treated with peptide nanofiber carriers, they showed significant increase in antigen internalization and a corresponding increase in the surface expression of the activation and maturation markers CD86, CD83 and HLA-DR, in addition to exhibiting a general morphology consistent with dendritic cell maturation. These results indicate that mannosylated peptide amphiphile nanofiber carriers are promising candidates to target dendritic cells for antigen delivery.


Assuntos
Nanofibras , Antígenos , Células Dendríticas , Glicopeptídeos , Lactonas
6.
Bioconjug Chem ; 28(3): 740-750, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-27977145

RESUMO

Spatial organization of bioactive moieties in biological materials has significant impact on the function and efficiency of these systems. Here, we demonstrate the effect of spatial organization of functional groups including carboxylate, amine, and glucose functionalities by using self-assembled peptide amphiphile (PA) nanofibers as a bioactive scaffold. We show that presentation of bioactive groups on glycopeptide nanofibers affects mesenchymal stem cells (MSCs) in a distinct manner by means of adhesion, proliferation, and differentiation. Strikingly, when the glutamic acid is present in the glycopeptide backbone, the PA nanofibers specifically induced differentiation of MSCs into brown adipocytes in the absence of any differentiation medium as shown by lipid droplet accumulation and adipogenic gene marker expression analyses. This effect was not evident in the other glycopeptide nanofibers, which displayed the same functional groups but with different spatial organization. Brown adipocytes are attractive targets for obesity treatment and are found in trace amounts in adults, which also makes this specific glycopeptide nanofiber system an attractive tool to study molecular pathways of brown adipocyte formation.


Assuntos
Adipogenia , Materiais Biocompatíveis/química , Glicopeptídeos/química , Células-Tronco Mesenquimais/citologia , Nanofibras/química , Tensoativos/química , Alicerces Teciduais/química , Adipócitos Marrons/citologia , Animais , Materiais Biocompatíveis/metabolismo , Adesão Celular , Linhagem Celular , Proliferação de Células , Células Cultivadas , Glicopeptídeos/metabolismo , Nanofibras/ultraestrutura , Ratos , Tensoativos/metabolismo , Engenharia Tecidual
7.
ACS Appl Mater Interfaces ; 8(18): 11280-7, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27097153

RESUMO

Oligonucleotides are promising drug candidates due to the exceptionally high specificity they exhibit toward their target DNA and RNA sequences. However, their poor pharmacokinetic and pharmacodynamic properties, in conjunction with problems associated with their internalization by cells, necessitates their delivery through specialized carrier systems for efficient therapy. Here, we investigate the effects of carrier morphology on the cellular internalization mechanisms of oligonucleotides by using self-assembled fibrous or spherical peptide nanostructures. Size and geometry were both found to be important parameters for the oligonucleotide internalization process; direct penetration was determined to be the major mechanism for the internalization of nanosphere carriers, whereas nanofibers were internalized by clathrin- and dynamin-dependent endocytosis pathways. We further showed that glucose conjugation to carrier nanosystems improved cellular internalization in cancer cells due to the enhanced glucose metabolism associated with oncogenesis, and the internalization of the glucose-conjugated peptide/oligonucleotide complexes was found to be dependent on glucose transporters present on the surface of the cell membrane.


Assuntos
Nanofibras , Nanosferas , Clatrina , Endocitose , Humanos , Oligonucleotídeos , Peptídeos
8.
Biomacromolecules ; 17(2): 679-89, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26716910

RESUMO

Glycosaminoglycans (GAGs) and glycoproteins are vital components of the extracellular matrix, directing cell proliferation, differentiation, and migration and tissue homeostasis. Here, we demonstrate supramolecular GAG-like glycopeptide nanofibers mimicking bioactive functions of natural hyaluronic acid molecules. Self-assembly of the glycopeptide amphiphile molecules enable organization of glucose residues in close proximity on a nanoscale structure forming a supramolecular GAG-like system. Our in vitro culture results indicated that the glycopeptide nanofibers are recognized through CD44 receptors, and promote chondrogenic differentiation of mesenchymal stem cells. We analyzed the bioactivity of GAG-like glycopeptide nanofibers in chondrogenic differentiation and injury models because hyaluronic acid is a major component of articular cartilage. Capacity of glycopeptide nanofibers on in vivo cartilage regeneration was demonstrated in microfracture treated osteochondral defect healing. The glycopeptide nanofibers act as a cell-instructive synthetic counterpart of hyaluronic acid, and they can be used in stem cell-based cartilage regeneration therapies.


Assuntos
Cartilagem Articular/fisiologia , Glicopeptídeos/química , Nanofibras/química , Regeneração , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Condrogênese , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/química , Masculino , Células-Tronco Mesenquimais/fisiologia , Camundongos , Mimetismo Molecular , Nanofibras/ultraestrutura , Coelhos , Espalhamento a Baixo Ângulo , Alicerces Teciduais/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...