Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Mater Today Bio ; 24: 100898, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38204482

RESUMO

The possible pathogenic impact of pro-inflammatory molecules produced by the gut microbiota is one of the hypotheses considered at the basis of the biomolecular dialogue governing the microbiota-gut-brain axis. Among these molecules, lipopolysaccharides (LPS) produced by Gram-negative gut microbiota strains may have a potential key role due to their toxic effects in both the gut and the brain. In this work, we engineered a new dynamic fluidic system, the MINERVA device (MI-device), with the potential to advance the current knowledge of the biological mechanisms regulating the microbiota-gut molecular crosstalk. The MI-device supported the growth of bacteria that are part of the intestinal microbiota under dynamic conditions within a 3D moving mucus model, with features comparable to the physiological conditions (storage modulus of 80 ± 19 Pa, network mesh size of 41 ± 3 nm), without affecting their viability (∼ 109 bacteria/mL). The integration of a fluidically optimized and user-friendly design with a bioinspired microenvironment enabled the sterile extraction and quantification of the LPS produced within the mucus by bacteria (from 423 ± 34 ng/mL to 1785 ± 91 ng/mL). Compatibility with commercially available Transwell-like inserts allows the user to precisely control the transport phenomena that occur between the two chambers by selecting the pore density of the insert membrane without changing the design of the system. The MI-device is able to provide the flow of sterile medium enriched with LPS directly produced by bacteria, opening up the possibility of studying the effects of bacteria-derived molecules on cells in depth, as well as the assessment and characterization of their effects in a physiological or pathological scenario.

2.
J Appl Biomater Funct Mater ; 17(1): 2280800019829023, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30803308

RESUMO

Biological gradients profoundly influence many cellular activities, such as adhesion, migration, and differentiation, which are the key to biological processes, such as inflammation, remodeling, and tissue regeneration. Thus, engineered structures containing bioinspired gradients can not only support a better understanding of these phenomena, but also guide and improve the current limits of regenerative medicine. In this review, we outline the challenges behind the engineering of devices containing chemical-physical and biomolecular gradients, classifying them according to gradient-making methods and the finalities of the systems. Different manufacturing processes can generate gradients in either in-vitro systems or scaffolds, which are suitable tools for the study of cellular behavior and for regenerative medicine; within these, rapid prototyping techniques may have a huge impact on the controlled production of gradients. The parallel need to develop characterization techniques is addressed, underlining advantages and weaknesses in the analysis of both chemical and physical gradients.


Assuntos
Engenharia Tecidual , Bioimpressão , Módulo de Elasticidade , Liofilização , Humanos , Dispositivos Lab-On-A-Chip , Polímeros/química , Medicina Regenerativa , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...