Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Nephrol ; 23(1): 47, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35090403

RESUMO

BACKGROUND: The leading cause of death in end-stage kidney disease is related to cardiovascular disease. Macrophages are known to be involved in both chronic kidney disease (CKD) and heart failure, however their role in the development of cardiorenal syndrome is less clear. We thus sought to investigate the role of macrophages in uremic cardiac disease. METHODS: We assessed cardiac response in two experimental models of CKD and tested macrophage and chemokine implication in monocytopenic CCR2-/- and anti-CXCL10 treated mice. We quantified CXCL10 in human CKD plasma and tested the response of human iPSC-derived cardiomyocytes and primary cardiac fibroblasts to serum from CKD donors. RESULTS: We found that reduced kidney function resulted in the expansion of cardiac macrophages, in particular through local proliferation of resident populations. Influx of circulating monocytes contributed to this increase. We identified CXCL10 as a crucial factor for cardiac macrophage expansion in uremic disease. In humans, we found increased plasma CXCL10 concentrations in advanced CKD, and identified the production of CXCL10 in cardiomyocytes and cardiac fibroblasts. CONCLUSIONS: This study provides new insight into the role of the innate immune system in uremic cardiomyopathy.


Assuntos
Coração/fisiopatologia , Macrófagos , Miocárdio/patologia , Insuficiência Renal Crônica/fisiopatologia , Animais , Camundongos
2.
Biochem Soc Trans ; 35(Pt 5): 1043-5, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17956274

RESUMO

Plasma membrane translocation, following allosteric binding of second messengers, initiates the signal transduction process mediated by cPKC [conventional PKC (protein kinase C)] isotypes. Mechanisms regulating the lifespan of the active enzyme such as its phosphorylation, internalization, dephosphorylation and degradation are key elements of the signalling network. The understanding of such mechanisms is essential for the design of therapeutic strategies targeting PKC isoenzymes.


Assuntos
Isoenzimas/metabolismo , Proteína Quinase C/metabolismo , Membrana Celular/metabolismo , Endocitose , Hidrólise , Fosforilação , Sistemas do Segundo Mensageiro
3.
Stroke ; 35(12): 2801-6, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15528463

RESUMO

BACKGROUND AND PURPOSE: The ATP-binding cassette transporter A1 (ABCA1) facilitates cholesterol efflux from cells, a key process in reverse cholesterol transport. Whereas previous investigations focused on mutations causing impaired ABCA1 function, we assessed the role of ABCA1 in human carotid atherosclerotic disease. METHODS: We compared the mRNA and protein levels of ABCA1, and one of its key regulators, the liver X receptor alpha (LXRalpha), between minimally and grossly atherosclerotic arterial tissue. We established ABCA1 and LXRalpha gene expression by real-time quantitative polymerase chain reaction in 10 control and 18 atherosclerotic specimens. Presence of ABCA1 protein was assessed by immunoblotting. To determine whether differences observed at a local level were reflected in the systemic circulation, we measured ABCA1 mRNA in leukocytes of 10 patients undergoing carotid endarterectomy and 10 controls without phenotypic atherosclerosis. RESULTS: ABCA1 and LXRalpha gene expression were significantly elevated in atherosclerotic plaques (P<0.0001 and 0.03, respectively). The increased mRNA levels of ABCA1 and LXRalpha were correlated in atherosclerotic tissue (r=0.85; P<0.0001). ABCA1 protein expression was significantly reduced in plaques compared with control tissues (P<0.0001). There were no differences in leukocyte ABCA1 mRNA expression (P=0.67). CONCLUSIONS: ABCA1 gene and protein are expressed in minimally atherosclerotic human arteries. Despite significant upregulation of ABCA1 mRNA, possibly mediated via LXRalpha, ABCA1 protein is markedly reduced in advanced carotid atherosclerotic lesions. No differences in leukocyte ABCA1 expression were found, suggesting the plaque microenvironment may contribute to the differential ABCA1 expression. We propose that the decreased level of ABCA1 protein is a key factor in the development of atherosclerotic lesions.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Estenose das Carótidas/metabolismo , Transportador 1 de Cassete de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Idoso , Estenose das Carótidas/genética , Estenose das Carótidas/patologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Expressão Gênica , Humanos , Receptores X do Fígado , Masculino , Receptores Nucleares Órfãos , RNA Mensageiro/análise , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo
4.
Biochim Biophys Acta ; 1567(1-2): 133-42, 2002 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-12488046

RESUMO

Two ATP-binding cassette (ABC) proteins, ABCG5 and ABCG8, have recently been associated with the accumulation of dietary cholesterol in the sterol storage disease sitosterolemia. These two 'half-transporters' are assumed to dimerize to form the complete sitosterol transporter which reduces the absorption of sitosterol and related molecules in the intestine by pumping them back into the lumen. Although mutations altering ABCG5 and ABCG8 are found in affected patients, no functional demonstration of sitosterol transport has been achieved. In this study, we investigated whether other ABC transporters implicated in lipid movement and expressed in tissues with a role in sterol synthesis and absorption, might also be involved in sitosterol transport. Transport by the multidrug resistance P-glycoprotein (P-gp; Abcb1), the multidrug resistance-associated protein (Mrp1; Abcc1), the breast cancer resistance protein (Bcrp; Abcg2) and the bile salt export pump (Bsep; Abcb11) was assessed using several assays. Unexpectedly, none of the candidate proteins mediated significant sitosterol transport. This has implications for the pathology of sitosterolemia. In addition, the data suggest that otherwise broad-specific ABC transporters have acquired specificity to exclude sitosterol and related sterols like cholesterol presumably because the abundance of cholesterol in the membrane would interfere with their action; in consequence, specific transporters have evolved to handle these sterols.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias , Sitosteroides/metabolismo , Células 3T3 , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Animais , Transporte Biológico , Citometria de Fluxo , Camundongos , Camundongos Knockout , Microscopia Confocal , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Spodoptera
5.
J Biol Chem ; 276(20): 17461-7, 2001 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-11278960

RESUMO

Volume regulation is essential for normal cell function. A key component of the cells' response to volume changes is the activation of a channel, which elicits characteristic chloride currents (I(Cl, Swell)). The molecular identity of this channel has been controversial. Most recently, ClC-3, a protein highly homologous to the ClC-4 and ClC-5 channel proteins, has been proposed as being responsible for I(Cl, Swell). Subsequently, however, other reports have suggested that ClC-3 may generate chloride currents with characteristics clearly distinct from I(Cl, Swell). Significantly different tissue distributions for ClC-3 have also been reported, and it has been suggested that two isoforms of ClC-3 may be expressed with differing functions. In this study we generated a series of cell lines expressing variants of ClC-3 to rigorously address the question of whether or not ClC-3 is responsible for I(Cl, Swell). The data demonstrate that ClC-3 is not responsible for I(Cl, Swell) and has no role in regulatory volume decrease, furthermore, ClC-3 is not activated by intracellular calcium and fails to elicit chloride currents under any conditions tested. Expression of ClC-3 was shown to be relatively tissue-specific, with high levels in the central nervous system and kidney, and in contrast to previous reports, is essentially absent from heart. This distribution is also inconsistent with the previous proposed role in cell volume regulation.


Assuntos
Tamanho Celular/fisiologia , Canais de Cloreto/fisiologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Anticorpos , Calcimicina/farmacologia , Cálcio/fisiologia , Linhagem Celular , Membrana Celular/fisiologia , Canais de Cloreto/efeitos dos fármacos , Canais de Cloreto/genética , Epitopos/química , Proteínas de Fluorescência Verde , Homeostase , Humanos , Soluções Hipotônicas , Proteínas Luminescentes/análise , Microscopia Confocal , Dados de Sequência Molecular , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/análise , Proteínas Recombinantes/efeitos dos fármacos , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Transfecção
6.
Neuron ; 23(3): 617-24, 1999 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10433272

RESUMO

Pain is unique among sensations in that the perceived intensity increases, or sensitizes, during exposure to a strong stimulus. One important mediator of sensitization is bradykinin (BK), a peptide released as a consequence of tissue damage. BK enhances the membrane ionic current activated by heat in nociceptive neurons, using a pathway that involves activation of protein kinase C (PKC). We find that five PKC isoforms are present in sensory neurons but that only PKC-epsilon is translocated to the cell membrane by BK. The heat response is sensitized when constitutively active PKC-epsilon is incorporated into nociceptive neurons. Conversely, BK-induced sensitization is suppressed by a specific peptide inhibitor of PKC-epsilon. We conclude that PKC-epsilon is principally responsible for sensitization of the heat response in nociceptors by bradykinin.


Assuntos
Isoenzimas/metabolismo , Neurônios Aferentes/enzimologia , Dor/metabolismo , Proteína Quinase C/metabolismo , Animais , Animais Recém-Nascidos , Transporte Biológico/efeitos dos fármacos , Bradicinina/farmacologia , Carcinógenos/farmacologia , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Gânglios Espinais/citologia , Temperatura Alta , Isoenzimas/antagonistas & inibidores , Neurônios Aferentes/citologia , Neurônios Aferentes/efeitos dos fármacos , Nociceptores/efeitos dos fármacos , Nociceptores/fisiologia , Técnicas de Patch-Clamp , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C-épsilon , Ratos , Estimulação Química , Acetato de Tetradecanoilforbol/farmacologia
7.
Nature ; 391(6664): 291-5, 1998 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-9440694

RESUMO

Bacteria have developed many fascinating antibiotic-resistance mechanisms. A protein in Lactococcus lactis, LmrA, mediates antibiotic resistance by extruding amphiphilic compounds from the inner leaflet of the cytoplasmic membrane. Unlike other known bacterial multidrug-resistance proteins, LmrA is an ATP-binding cassette (ABC) transporter. The human multidrug-resistance P-glycoprotein, encoded by the MDR1 gene, is also an ABC transporter, overexpression of which is one of the principal causes of resistance of human cancers to chemotherapy. We expressed lmrA in human lung fibroblast cells. Surprisingly, LmrA was targeted to the plasma membrane and conferred typical multidrug resistance on these human cells. The pharmacological characteristics of LmrA and P-glycoprotein-expressing lung fibroblasts were very similar, and the affinities of both proteins for vinblastine and magnesium-ATP were indistinguishable. Blockers of P-glycoprotein-mediated multidrug resistance also inhibited LmrA-dependent drug resistance. Kinetic analysis of drug dissociation from LmrA expressed in plasma membranes of insect cells revealed the presence of two allosterically linked drug-binding sites indistinguishable from those of P-glycoprotein. These findings have implications for the reversal of antibiotic resistance in pathogenic microorganisms. Taken together, they demonstrate that bacterial LmrA and human P-glycoprotein are functionally interchangeable and that this type of multidrug-resistance efflux pump is conserved from bacteria to man.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Bactérias , Resistência Microbiana a Medicamentos/genética , Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Transporte Biológico , Linhagem Celular , Membrana Celular/metabolismo , Teste de Complementação Genética , Humanos , Indolizinas/farmacologia , Pulmão/citologia , Nicardipino/farmacologia , Fenetilaminas/farmacologia , Reação em Cadeia da Polimerase , Proteínas Recombinantes/genética , Transfecção , Vimblastina/metabolismo
8.
J Biol Chem ; 271(23): 13668-74, 1996 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-8662768

RESUMO

P-glycoprotein (P-gp) is an active transporter that can confer multidrug resistance by pumping cytotoxic drugs out of cells and tumors. P-gp is phosphorylated at several sites in the "linker" region, which separates the two halves of the molecule. To examine the role of phosphorylation in drug transport, we mutated P-gp such that it could no longer be phosphorylated by protein kinase C (PKC). When expressed in yeast, the ability of the mutant proteins to confer drug resistance, or to mediate [3H]vinblastine accumulation in secretory vesicles, was indistinguishable from that of wild type P-gp. A matched pair of mammalian cell lines were generated expressing wild type P-gp and a non-phosphorylatable mutant protein. Mutation of the phosphorylation sites did not alter P-gp expression or its subcellular localization. The transport properties of the mutant and wild type proteins were indistinguishable. Thus, phosphorylation of the linker of P-gp by PKC does not affect the rate of drug transport. In light of these data, the use of agents that alter PKC activity to reverse multidrug resistance in the clinic should be considered with caution.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Proteína Quinase C/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação/genética , Transporte Biológico Ativo , Linhagem Celular , Clonagem Molecular , Sequência Consenso , Doxorrubicina/farmacocinética , Resistência a Medicamentos , Fluoresceínas/farmacocinética , Humanos , Técnicas In Vitro , Cinética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oligodesoxirribonucleotídeos/genética , Fosforilação , Mutação Puntual , Saccharomyces cerevisiae/genética , Transfecção , Vimblastina/farmacocinética
9.
J Cell Sci ; 107 ( Pt 12): 3281-90, 1994 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-7706385

RESUMO

P-glycoprotein (P-gp), the product of the human multidrug resistance (MDR1) gene, confers multidrug resistance on cells by acting as an ATP-dependent drug transporter. A method using confocal microscopy was developed to measure the transport activity of P-gp from the rate of movement of doxorubicin, a fluorescent substrate of P-gp, across the membrane of a single cell. Recent work has shown that expression of P-gp enhances the activation of chloride channels in response to cell swelling, suggesting that membrane stretch might switch P-gp from a drug-transporting mode to a mode in which it activates chloride channels. In agreement with this idea, we find that cell swelling inhibits drug efflux in cells expressing P-gp but is without effect on the slower background efflux in cells not expressing P-gp and in cells transiently transfected with a mutated MDR1 in which the ATP hydrolysis sites had been inactivated. The identification of a novel means for inhibiting P-gp-mediated drug transport may have implications for the reversal of multidrug resistance during chemotherapy.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Permeabilidade da Membrana Celular/fisiologia , Doxorrubicina/metabolismo , Resistência a Múltiplos Medicamentos/fisiologia , Células 3T3 , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Animais , Transporte Biológico/efeitos dos fármacos , Compartimento Celular , Canais de Cloreto/metabolismo , Colforsina/análogos & derivados , Colforsina/farmacologia , Humanos , Camundongos , Microscopia Confocal/métodos , Pressão Osmótica , Proteínas Recombinantes/metabolismo , Verapamil/farmacologia
10.
Cancer Immunol Immunother ; 38(3): 171-7, 1994 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-8124685

RESUMO

A hybrid hybridoma secreting a bispecific hybrid mAb (bsmAb), which recognizes both the epidermal growth factor receptor (EGF-R) and the drug doxorubicin, was produced by somatic hybridization of two hybridomas. The bsmAb obtained was able to retarget doxorubicin cytotoxicity in vitro specifically on EGF-R-positive cells exerting at the same time an antidotal effect on cells that did not overexpress the EGF-R. Distribution studies in mice indicate that the bsmAb selectively delivers the drug to tumour cells and modifies doxorubicin biodistribution with a statistically significant decrease of drug concentration in the intestine, which is the main target of early anthracycline toxicity. In keeping with this finding is the remarkable antidotal activity exerted by bsmAb in mice treated with doxorubicin, which is proved by retardation in loss of body weight and mortality. The effectiveness on tumour growth of the mAb followed by the administration of doxorubicin appears to be equal to that of the drug alone; however, the bsmAb exerts a remarkable antidotal activity.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Doxorrubicina/administração & dosagem , Doxorrubicina/imunologia , Receptores ErbB/imunologia , Animais , Afinidade de Anticorpos , Doxorrubicina/farmacocinética , Doxorrubicina/toxicidade , Humanos , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Neoplasias Experimentais/tratamento farmacológico , Proteínas Recombinantes de Fusão , Distribuição Tecidual , Células Tumorais Cultivadas
12.
Int J Cancer ; 50(4): 617-20, 1992 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-1537626

RESUMO

A monoclonal antibody (MAb) directed against doxorubicin (DXR), denominated MAD II, was found to exert an antidotal action by modulating the kinetic and dynamic characteristics of the drug. In vitro, MAD II has been found to reduce the cytotoxicity of DXR and the drug uptake on spleen lymphocytes more efficiently than on tumor cells (P388 leukemia cells). In vivo, the anti-DXR MAb modified the drug distribution; the drug uptake was found to be reduced in the intestine and myocardial tissues and increased in the tumor, liver and spleen. In mice treated with DXR, the administration of anti-DXR MAb exerted an antidotal activity which was proved by the reduction in body-weight loss and mortality. In contrast, the therapeutic efficacy of the drug in P388-tumor-bearing mice was not influenced by the anti-DXR MAb.


Assuntos
Anticorpos Monoclonais/imunologia , Doxorrubicina/farmacocinética , Animais , Anticorpos Monoclonais/administração & dosagem , Reações Antígeno-Anticorpo , Antineoplásicos/imunologia , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/imunologia , Doxorrubicina/toxicidade , Leucemia P388 , Camundongos , Camundongos Endogâmicos , Distribuição Tecidual , Células Tumorais Cultivadas
13.
Proc R Soc Lond B Biol Sci ; 237(1287): 247-57, 1989 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-2475875

RESUMO

In human myotubes cultured from biopsies of normal subjects and dystrophic patients we investigated, with the patch-clamp technique, the activation properties of the nicotinic acetylcholine receptor (AChoR) in the presence of acetylcholine and suberyldicholine. The single-channel conductance and the lifetime of the openings were not found to differ. In contrast, the average frequency of openings was about four times higher in Duchenne muscular dystrophy (DMD) myotubes in the presence of equal amounts of acetylcholine, but not of suberyldicholine. The most reasonable conclusion from this observation is that the behaviour of the AChoR is not altered in DMD cells but that there is a greater average concentration of ACho molecules present around AChoRs. This leads to the tentative conclusion that the activity of the enzyme acetylcholinesterase (AChoE) is impaired by some unknown mechanism in the dystrophic myotube.


Assuntos
Acetilcolina/farmacologia , Colina/análogos & derivados , Canais Iônicos/fisiologia , Músculos/fisiopatologia , Distrofias Musculares/fisiopatologia , Receptores Nicotínicos/fisiologia , Células Cultivadas , Criança , Pré-Escolar , Colina/farmacologia , Condutividade Elétrica , Humanos , Canais Iônicos/efeitos dos fármacos , Cinética , Potenciais da Membrana/efeitos dos fármacos , Músculos/efeitos dos fármacos , Músculos/fisiologia , Receptores Nicotínicos/efeitos dos fármacos , Valores de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...