Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 227: 39-50, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-31002921

RESUMO

We previously showed that folate liposomes of 5FU made from Dipalmitoylphosphatidylcholine (DPPC) induced cell death in HT-29 and HeLa cells more potently than bulk 5FU. Also, a primary 5FU liposomal formulation with phosphatidyl choline (PC) exhibited higher cytotoxicity in murine colon cancer cells. In the present study, optimization of 5FU PC liposome, mechanism of cell death induction in human cancer cell lines and its safety along with other assays have been employed for targeted PC liposomes of 5FU. Liposomes were prepared using thin layer method and optimization of preparation was assessed using central composite design (CCD) of response surface methodology (RSM). Folic acid (FA) was employed as the targeting ligand. Morphology of 5FU loaded liposomes and changes in their thermal behavior were assessed by transmission electron microscopy (TEM) and differential scanning calorimetry (DSC), respectively. In vitro cytotoxicity was explored using MTT assay in HT-29, Caco-2, HeLa and MCF-7 cell lines. Cytotoxicity mechanism of the targeted delivery system was searched through the evaluation of reactive oxygen species (ROS) overproduction, mitochondrial membrane potential (∆Ψm), the release of cytochrome c, the activity of caspase 3/7 and apoptosis and necrosis rate. Liposomes were spherical in shape and 5FU was successfully encapsulated into liposomes rather in an amorphous state. Our interesting results showed that in HT-29 cells targeted liposomes triggered the mitochondrial apoptotic pathway by decreasing the mitochondrial membrane potential, releasing of cytochrome c and promoting the substantial activity of caspase 3/7. In HeLa cells, however, targeted liposomes particularly activated necrosis pathway through the overproduction of ROS. Folate-liposomal 5FU showed significantly higher antitumor efficiency compared to free drug. The results of this study offer new prospects for cancer therapy with reducing systemic drug exposure and associated toxicities.


Assuntos
Fluoruracila/administração & dosagem , Fluoruracila/metabolismo , Lipossomos/uso terapêutico , Apoptose/efeitos dos fármacos , Células CACO-2 , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Fibroblastos , Fluoruracila/farmacologia , Ácido Fólico/administração & dosagem , Ácido Fólico/metabolismo , Células HT29 , Células HeLa , Humanos , Lipossomos/administração & dosagem , Células MCF-7 , Microscopia Eletrônica de Transmissão/métodos , Nanosferas/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo
2.
Int J Biol Macromol ; 124: 1299-1311, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30248424

RESUMO

In the present study, a novel 5FU and OXA co-loaded PHBV/PLGA NPs was developed which induced apoptosis in cancer cells. NPs were prepared by the double emulsion method and their preparation was optimized using D-optimal design of response surface methodology (RSM). 5FU-OXA loaded NPs were evaluated by SEM, DSC and DLS. NPs were spherical as shown by SEM and the results of DSC indicated that both drugs successfully entrapped into NPs. 5FU-OXA loaded NPs exhibited higher cytotoxicity effect than free drugs on cancer cells. For the first time to our knowledge, these results showed that more ROS generation and stronger activation of the ROS-dependent apoptotic pathway were induced by 5FU and OXA delivered by NPs. Furthermore, it was observed that NPs were hemocompatible. Co-loaded NPs exhibited significantly higher antitumor efficiency compared to free drugs combination, indicating this co-delivery system provides great potential in cancer therapy. The results of present study also confirmed that PHBV/PLGA NPs can be served as a promising platform for the co-delivery of antitumor drugs and present a new view for treatment of cancer with reducing side effect of drugs.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias do Colo/tratamento farmacológico , Portadores de Fármacos , Fluoruracila/farmacologia , Nanopartículas/química , Oxaliplatina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Eritrócitos/efeitos dos fármacos , Fluoruracila/farmacocinética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/administração & dosagem , Nanopartículas/ultraestrutura , Oxaliplatina/farmacocinética , Poliésteres/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Ratos Wistar , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/metabolismo , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
J Microencapsul ; 35(6): 548-558, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30445885

RESUMO

This study was performed to prepare 5-fluorouracil (5FU) containing targeted liposomes for the safety and efficacy enhancement. Liposomes were prepared using thin layer method and transferrin (Tf) was employed as the targeting ligand. Morphology of 5FU-loaded liposomes was assessed by transmission electron microscopy (TEM). The in vitro cytotoxicity was investigated via MTT assay on HT-29, CT26 and fibroblast cells. Mitochondrial membrane and cell death evaluations were also investigated. Resulted showed that the encapsulation efficiency (EE%) and particle size of the liposomes were 40.12% and 130 nm, respectively. TEM image implied that liposomes were spherical in shape. In cancer cells, targeted liposomes triggered the mitochondrial apoptotic pathway by lower production of reactive oxygen species (ROS) (63.58 vs 84.95 fluorescence intensity), reduced mitochondrial membrane potential and releasing of cytochrome c (68.66 vs 51.13 ng/mL). The results of this study indicated that Tf-targeted 5FU liposomes can be employed as promising nanocarrier for the delivery of drugs to cancer cells.


Assuntos
Antimetabólitos Antineoplásicos/química , Antimetabólitos Antineoplásicos/farmacologia , Fluoruracila/química , Fluoruracila/farmacologia , Transferrina/química , Transferrina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citocromos c/metabolismo , Composição de Medicamentos , Sistemas de Liberação de Medicamentos , Hemólise/efeitos dos fármacos , Humanos , Ligantes , Lipossomos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Tamanho da Partícula , Ratos , Ratos Wistar
4.
Biomed Pharmacother ; 108: 1259-1273, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30372827

RESUMO

The aim of this study was to develop and characterize 5-Fluorouracil (5FU) containing targeted liposomes in order to enhance the efficacy and safety of the drug. Folic acid (FA) was used as a targeting ligand. The in vitro cytotoxicity of formulation against HT-29, Caco-2, CT26, HeLa and MCF-7 cell lines was evaluated using MTT assay. Mechanism of cell death induced by targeted liposomes was further investigated via the production of reactive oxygen species (ROS), change in mitochondrial membrane potential (ΔΨm), release of cytochrome c and activity of caspase 3/7. The in vivo tumor inhibition study was also performed after administration of drug and targeted 5FU liposome. The encapsulation efficiency (EE%) of the optimized formulation was 39.71%. Particle size of liposomes was around 174 nm and the nanoparticles were found to be spherical in shape. Differential Scanning Calorimetry (DSC) results indicated that the drug remained in an amorphous state in liposomes. According to the MTT results, targeted liposomes exhibited higher cytotoxicity than 5FU and liposomal 5FU. Targeted liposomes were found to trigger necrosis in HT-29 cells; while, in HeLa cells, targeted liposomes activated apoptotic pathway by collapse of ΔΨm, increased activity of cytochrome c as well as caspases activity. in vivo results showed that targeted liposomes reduced tumor volume significantly in comparison with 5FU (169.00 mm3 tumor volume vs 326.40 mm3). From these findings, it can be concluded that folic acid targeted liposomes may provide a new platform for selective delivery of drugs to cancer cells.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Fluoruracila/administração & dosagem , Ácido Fólico/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/patologia , Liberação Controlada de Fármacos , Fluoruracila/química , Fluoruracila/farmacologia , Ácido Fólico/química , Humanos , Lipossomos , Camundongos , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo
5.
Cell J ; 18(4): 503-513, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28042535

RESUMO

OBJECTIVE: Phthalates, which are commonly used to render plastics into soft and flexible materials, have also been determined as developmental and reproductive toxicants in human and animals. The purpose of this study was to evaluate the effect of mono-(2- ethylhexyl) phthalate (MEHP) and di-(2-ethylhexyl) phthalate (DEHP) oral administrations on maturation of mouse oocytes, apoptosis and gene transcription levels. MATERIALS AND METHODS: In this experimental study, immature oocytes recovered from Naval Medical Research Institute (NMRI) mouse strain (6-8 weeks), were divided into seven different experimental and control groups. Control group oocytes were retrieved from mice that received only normal saline. The experimental groups I, II or III oocytes were retrieved from mice treated with 50, 100 or 200 µl DEHP (2.56 µM) solution, respectively. The experimental groups IV, V or VI oocytes were retrieved from mouse exposed to 50, 100 or 200 µl MEHP (2.56 µM) solution, respectively. Fertilization and embryonic development were carried out in OMM and T6 medium. Apoptosis was assessed by annexin V-FITC/Dead Cell Apoptosis Kit, with PI staining. In addition, the mRNA levels of Pou5f1, Ccna1 and Asah1 were examined in oocytes. Finally, mouse embryo at early blastocyst stage was stained with acridine-orange (AO) and ethidium-bromide (EB), in order to access their viability. RESULTS: The proportion of oocytes that progressed up to metaphase II (MII) and 2-cells embryo formation stage was significantly decreased by exposure to MEHP or DEHP, in a dose-dependent manner. Annexin V and PI positive oocytes showed greater quantity in the treated mice than control. Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) revealed that expression levels of Pou5f1, Asah1 and Ccna1 were significantly lower in the treated mouse oocytes than control. The total cell count for blastocyst developed from the treated mouse oocytes was lower than the controls. CONCLUSION: These results indicate that oral administration of MEHP and DEHP could negatively affect mouse oocyte meiotic maturation and development in vivo, suggesting that phthalates could be risk factors for mammalians' reproductive health. Additionally, phthalate-induced changes in Pou5f1, Asah1 and Ccna1 transcription level could explain in part, the reduced developmental ability of mouse-treated oocytes.

6.
Vet Res Forum ; 7(1): 1-6, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27226880

RESUMO

Pomegranate (Punica granatum L.) has been used widely in the traditional medicine of various civilizations for more than 5000 years. The pomegranate tree has several parts; each part has useful medicinal effects. Previous studies have demonstrated the antibacterial, antioxidant, and anti-inflammatory properties of pomegranate. The aim of the present study was to determine whether administration of pomegranate extract could result in morphometric changes in the kidneys of rats. Eighteen male rats (180-200 g) were divided into three groups that received either: G1, distilled water; G2, 250 mg kg(-1) pomegranate extract; and G3, 500 mg kg(-1) pomegranate extract via oral gavages daily for eight weeks. At the end of eight weeks, the rats were euthanized and their kidneys were removed and processed for morphometric analyses. In rats received pomegranate extract, the kidney weight, kidney weight/body weight ratio, cortex v/lume and glomerular volume were increased (p < 0.05), while, medulla volume and the number of glomeruli per kidney did not change. No pathological lesions were observed in the kidney. Therefore, pomegranate hydro-alcoholic extract at doses of 250 and 500 (mg kg(-1)) increased the volume of some parts of the kidney; however, it did not cause any pathological changes in the kidney.

7.
Cell J ; 17(4): 720-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26862531

RESUMO

OBJECTIVE: To evaluate the effect of Exendine-4 (EX-4), a Glucagon-like peptide 1 (GLP-1) receptor agonist, on the differentiation of insulin-secreting cells (IPCs) from rat adipose-derived mesenchymal stem cells(ADMSCs). MATERIALS AND METHODS: In this experimental study, ADMSCs were isolated from rat adi- pose tissue and exposed to induction media with or without EX-4. After induction, the existence of IPCs was confirmed by morphology analysis, expression pattern analysis of islet-specific genes (Pdx-1, Glut-2 and Insulin) and insulin synthesis and secretion. RESULTS: IPCs induced in presence of EX-4 were morphologically similar to pancre- atic islet-like cells. Expression of Pdx-1, Glut-2 and Insulin genes in EX-4 treated cells was significantly higher than the cells exposed to differentiation media without EX-4. Compared to EX-4 untreated ADMSCs, insulin release from EX-4 treated ADMSCs showed a nearly 2.5 fold (P<0.05) increase when exposed to a high glucose (25 mM) medium. The percentage of insulin positive cells in the EX-4 treated group was ap- proximately 4-fold higher than in the EX-4 untreated ADMSCs. CONCLUSION: The present study has demonstrated that EX-4 enhances the differen- tiation of ADMSCs into IPCs. Improvement of this method may help the formation of an unlimited source of cells for transplantation.

8.
Cell J ; 17(3): 412-21, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26464812

RESUMO

OBJECTIVE: Zinc oxide nanoparticles (ZnO-NPs) are increasingly used in sunscreens, bio- sensors, food additives, pigments, manufacture of rubber products, and electronic materi- als. There are several studies about the effects of NPs on dermal fibroblast or keratino- cytes, but very little attention has been directed towards adipose-derived mesenchymal stem cells (ASCs). A previous study has revealed that ZnO-NPs restricted the migration capability of ASCs. However, the potential toxicity of these NPs on ASCs is not well un- derstood. This study intends to evaluate the effects of ZnO-NPs on subcutaneous ASCs. MATERIALS AND METHODS: In this experimental study, In order to assess toxicity, we ex- posed rat ASCs to ZnO-NPs at concentrations of 10, 50, and 100 µg/ml for 48 hours. Tox- icity was evaluated by cell morphology changes, cell viability assay, as well as apoptosis and necrosis detection. RESULTS: ZnO-NPs concentration dependently reduced the survival rates of ASCs as re- vealed by the trypan blue exclusion and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazo- lium-bromide (MTT) tests. ZnO-NPs, at concentrations of 10 and 50 µg/ml, induced a significant increase in apoptotic indices as shown by the annexin V test. The concentration of 10 µg/ml of ZnO-NPs was more toxic. CONCLUSION: Lower concentrations of ZnO-NPs have toxic and apoptotic effects on subcutaneous ASCs. We recommend that ZnO-NPs be used with caution if there is a dermatological problem.

9.
Biomed Rep ; 3(5): 721-725, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26405552

RESUMO

Metformin is currently the first drug of choice for treatment of type II diabetes. The primary function of metformin is to decrease hepatic glucose production mainly by inhibiting gluconeogenesis. The aim of the present study was to investigate the effects of glucose alone (control groups) and glucose and metformin (treatment groups) on pancreatic islets functions. Pancreatic islets were isolated by collagenase digestion and incubated for 24 or 48 h in RPMI-1640 containing 5 mmol/l glucose (control groups 1 and 2, respectively) or 24 h with 25 mmol/l glucose (control group 3) and 15 µmol/l metformin (treatment groups 1, 2 and 3, corresponding to the control groups, respectively). Subsequently, the rate of insulin output from islets, pancreatic and duodenal homeobox 1 (Pdx-1) and insulin genes expression and islet viability were assayed. The rate of insulin secretion in a 5 mmol/l glucose concentration in the 48 h treatment group increased significantly compared with that of the 24 h treatment group (P<0.05). An increase of the glucose concentration (25 mmol/l) caused insulin secretion to increase compared with that of 5 mmol/l glucose. Pdx-1 gene expression in treatment group 2 significantly decreased compared with the control group 2 (P<0.05). The the Pdx-1 gene expression in treatment group 2 decreased compared with that of the treatment group 1. The expression of the insulin gene in treatment group 1 increased compared with control group 1, and in treatment group 2, there was a 2-fold increase in insulin gene expression compared with control group 2. The insulin gene expression in treatment group 2 increased compared with treatment group 1. The percentage of islet cell viability was increased in treatment group 3 by ~40% compared with the islet cells of treatment groups 1 and 2 (P<0/05). These data indicate that glucose and metformin have direct effects on ß-cell function.

10.
Biomed Rep ; 3(3): 304-308, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26137227

RESUMO

Currently, culture and growth keratinocytes are important stages in achieving a reliable and reproducible skin tissue. In the present study, two different methods, enzymatic and explant methods, for keratinocytes isolation from human foreskin were compared. Foreskins were cut into 2-3 mm pieces and placed in trypsin at 4°C overnight for separation of the epidermis from the dermis. Subsequently, these samples were divided into two groups: i) Keratinocytes separated from the epidermis by trypsin and ii) by the explant method. These keratinocytes were divided into two groups: i) With no feeder layer and ii) onto a type I collagen scaffold. The cells were evaluated using immunocytochemistry and 4',6-diamidine-2'-phenylindole dihydrochloride (DAPI) staining. In the enzymatic treatment, after 7-10 days no attached cells were found in the cell culture dishes. In the explant method, keratinocytes were separated after ~24 h, attached rapidly and formed big colonies into a collagen scaffold. In the absence of a feeder layer, small colonies were developed with rapid loss of proliferation within 2-3 days. Keratinocytes showed positive immunoreactivity for the pan-cytokeratin marker and keratinocytes' nuclei were clearly observed. This method could be applied and developed as a component of skin substitutes to treat burns and wounds and also in laboratory testing.

11.
Cell Tissue Res ; 361(3): 745-53, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25795142

RESUMO

The aim of this study is to evaluate the collagen/hyaluronic acid (Col/HA) scaffold effect on the differentiation of insulin-producing cells (IPCs) from adipose-derived mesenchymal stem cells (ASCs). In this experimental study, ASCs were cultured and seeded in a Col/HA scaffold (3D culture) and then treated with induction media. After induction, the presence of IPCs was evaluated using gene expression (PDX-1, GLUT-2 and insulin) analysis and immunocytochemistry, while functional maturity was determined by measuring insulin release in response to low- and high-glucose media. The induced IPCs were morphologically similar to pancreatic islet-like cells. Expression of the islet-associated genes PDX-1, GLUT-2 and insulin genes in 3D-cultured cells was markedly higher than the 2D-cultured cells exposure differentiation media. Compared to the 2D culture of ASCs-derived IPCs, the insulin release from 3D ASCs-derived IPCs showed a nearly 4-fold (p < 0.05) increase when exposed to a high glucose (25 mmol) medium. The percentage of insulin-positive cells in the 3D experimental group showed an approximately 4-fold increase compared to the 2D experimental culture cells. The results of this study demonstrated that the COL/HA scaffold can enhance the differentiation of IPCs from rat ASCs.


Assuntos
Células da Medula Óssea/citologia , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Glucose/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Adiposidade/fisiologia , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Feminino , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Ratos Wistar
12.
Bioinformation ; 10(11): 684-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25512684

RESUMO

Black cumin (Nigella sativa) is a spice having medicinal properties with pungent and bitter odour. It is used since thousands of years to treat various ailments, including cancer mainly in South Asia and Middle Eastern regions. Substantial evidence in multiple research studies emphasizes about the therapeutic importance of bioactive principles of N. sativa in cancer bioassays; however, the exact mechanism of their anti-tumour action is still to be fully comprehended. The current study makes an attempt in this direction by exploiting the advancements in the Insilico reverse screening technology. In this study, three different Insilico Reverse Screening approaches have been employed for identifying the putative molecular targets of the bioactive principles in Black cumin (thymoquinone, alpha-hederin, dithymoquinone and thymohydroquinone) relevant to its anti-tumour functionality. The identified set of putative targets is further compared with the existing set of experimentally validated targets, so as to estimate the performance of insilico platforms. Subsequently, molecular docking simulations studies were performed to elucidate the molecular interactions between the bioactive compounds & their respective identified targets. The molecular interactions of one such target identified i.e. VEGF2 along with thymoquinone depicted one H-bond formed at the catalytic site. The molecular targets identified in this study need further confirmatory tests on cancer bioassays, in order to justify the research findings from Insilico platforms. This study has brought to light the effectiveness of usage of Insilico Reverse Screening protocols to characterise the un-identified target-ome of poly pharmacological bioactive agents in spices.

13.
Bioinformation ; 7(8): 379-83, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22347778

RESUMO

UNLABELLED: Toxoplasma gondii ME49 is an obligatory intracellular apicomplexa parasite that causes toxoplasmosis in humans, domesticated and wild animals. Waterborne outbreaks of acute toxoplasmosis worldwide reinforce the transmission of Toxoplasma gondii ME49 to humans through contaminated water and may have a greater epidemiological impact than previously believed. In the quest for drug and vaccine target identification subtractive genomics involving subtraction between the host and pathogen genome has been implemented for enlisting essential pathogen specific proteins. Using this approach, our analysis on both human and Toxoplasma gondii ME49 reveals that out of 7987 protein coding sequences of the pathogen, 950 represent essential non human-homologous proteins. Subcellular localization prediction & comparative-biochemical pathway analysis of these essential proteins gives a list of apicoplast-associated proteins having unique pathogen-specific metabolic pathway. These apicoplast-associated enzymes involved in fatty acid biosynthesis pathway of Toxoplasma gondii ME49, may be used as potential drug targets, as the pathway is vital for the protozoan's survival. Structure prediction of drug target proteins was done using fold based recognition method. Screening of the functional inhibitors against these novel targets may result in discovery of novel therapeutic compounds that can be effective against Toxoplasma gondii ME49. ABBREVIATIONS: DEG - Database of Essential Gene, KEGG - Kyoto Encyclopaedia of Genes and Genomes, KAAS - KEGG Automated Annotation Server, PFP - Protein Function Prediction, COG - Cluster of Orthologous Genes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...