Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 8180, 2023 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-37210419

RESUMO

There exists decades-old evidence that some mycobacteria, including Mycobacterium avium and Mycobacterium smegmatis, produce hydrazidase, an enzyme that can hydrolyze the first-line antitubercular agent isoniazid. Despite its importance as a potential resistance factor, no studies have attempted to reveal its identity. In this study, we aimed to isolate and identify M. smegmatis hydrazidase, characterize it, and evaluate its impact on isoniazid resistance. We determined the optimal condition under which M. smegmatis produced the highest amount of hydrazidase, purified the enzyme by column chromatography, and identified it by peptide mass fingerprinting. It was revealed to be PzaA, an enzyme known as pyrazinamidase/nicotinamidase whose physiological role remains unknown. The kinetic constants suggested that this amidase with broad substrate specificity prefers amides to hydrazides as a substrate. Notably, of the five tested compounds, including amides, only isoniazid served as an efficient inducer of pzaA transcription, as revealed by quantitative reverse transcription PCR. Moreover, high expression of PzaA was confirmed to be beneficial for the survival and growth of M. smegmatis in the presence of isoniazid. Thus, our findings suggest a possible role for PzaA, and other hydrazidases yet to be identified, as an intrinsic isoniazid resistance factor of mycobacteria.


Assuntos
Mycobacterium tuberculosis , Mycobacterium , Isoniazida/farmacologia , Antituberculosos/farmacologia , Mycobacterium smegmatis , Amidas
2.
Med Mycol J ; 64(1): 7-17, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36858631

RESUMO

The multidrug-resistant pathogen Candida auris is characterized by its aggregation under certain conditions, which affects its biofilm formation, drug susceptibility, and pathogenicity. Although the innate tendency to aggregate depends on the strain, the mechanism regulating C. auris aggregation remains unclear. We found that the culture supernatant from one of the 95 Actinomyces strains isolated from a deep-sea environment (IMAs2016D-66) inhibited C. auris aggregation. The cells grown in the presence of IMAs2016D-66 exhibited reduced hydrophobicity, biofilm formation, and enhanced proteolytic activity. In addition, the efflux pump activity of the fluconazole-resistant C. auris strain LSEM 3673 was stimulated by IMAs2016D-66, whereas no significant change was observed in the fluconazole-susceptible strain LSEM 0643. As the relationship between aggregative tendency and virulence in C. auris is still unclear, IMAs2016D-66 can serve as a tool for investigating regulatory mechanisms of phenotype switching and virulence expression of C. auris. Understanding of phenotype switching may help us not only to understand the pathogenicity of C. auris, but also to design new drugs that target the molecules regulating virulence factors.


Assuntos
Actinobacteria , Virulência , Candida auris , Fluconazol , Biofilmes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...