Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 8501, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38151585

RESUMO

DNA polymerase (DNAP) can correct errors in DNA during replication by proofreading, a process critical for cell viability. However, the mechanism by which an erroneously incorporated base translocates from the polymerase to the exonuclease site and the corrected DNA terminus returns has remained elusive. Here, we present an ensemble of nine high-resolution structures representing human mitochondrial DNA polymerase Gamma, Polγ, captured during consecutive proofreading steps. The structures reveal key events, including mismatched base recognition, its dissociation from the polymerase site, forward translocation of DNAP, alterations in DNA trajectory, repositioning and refolding of elements for primer separation, DNAP backtracking, and displacement of the mismatched base into the exonuclease site. Altogether, our findings suggest a conserved 'bolt-action' mechanism of proofreading based on iterative cycles of DNAP translocation without dissociation from the DNA, facilitating primer transfer between catalytic sites. Functional assays and mutagenesis corroborate this mechanism, connecting pathogenic mutations to crucial structural elements in proofreading steps.


Assuntos
Replicação do DNA , DNA Polimerase Dirigida por DNA , Humanos , Replicação do DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , DNA/genética , DNA/química , Exonucleases/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(41): e2207303119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191226

RESUMO

In live cells, phase separation is thought to organize macromolecules into membraneless structures known as biomolecular condensates. Here, we reconstituted transcription in condensates from purified mitochondrial components using optimized in vitro reaction conditions to probe the structure-function relationships of biomolecular condensates. We find that the core components of the mt-transcription machinery form multiphasic, viscoelastic condensates in vitro. Strikingly, the rates of condensate-mediated transcription are substantially lower than in solution. The condensate-mediated decrease in transcriptional rates is associated with the formation of vesicle-like structures that are driven by the production and accumulation of RNA during transcription. The generation of RNA alters the global phase behavior and organization of transcription components within condensates. Coarse-grained simulations of mesoscale structures at equilibrium show that the components stably assemble into multiphasic condensates and that the vesicles formed in vitro are the result of dynamical arrest. Overall, our findings illustrate the complex phase behavior of transcribing, multicomponent condensates, and they highlight the intimate, bidirectional interplay of structure and function in transcriptional condensates.


Assuntos
Corpos Nucleares , Organelas , Mitocôndrias/genética , Organelas/metabolismo , RNA/química , Relação Estrutura-Atividade
3.
Nucleic Acids Res ; 50(5): 2765-2781, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35191499

RESUMO

Recognition of mammalian mitochondrial promoters requires the concerted action of mitochondrial RNA polymerase (mtRNAP) and transcription initiation factors TFAM and TFB2M. In this work, we found that transcript slippage results in heterogeneity of the human mitochondrial transcripts in vivo and in vitro. This allowed us to correctly interpret the RNAseq data, identify the bona fide transcription start sites (TSS), and assign mitochondrial promoters for > 50% of mammalian species and some other vertebrates. The divergent structure of the mammalian promoters reveals previously unappreciated aspects of mtDNA evolution. The correct assignment of TSS also enabled us to establish the precise register of the DNA in the initiation complex and permitted investigation of the sequence-specific protein-DNA interactions. We determined the molecular basis of promoter recognition by mtRNAP and TFB2M, which cooperatively recognize bases near TSS in a species-specific manner. Our findings reveal a role of mitochondrial transcription machinery in mitonuclear coevolution and speciation.


Assuntos
Mitocôndrias/genética , Transcrição Gênica , Animais , DNA Mitocondrial/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Sítio de Iniciação de Transcrição
4.
EMBO J ; 40(19): e107988, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34423452

RESUMO

The intricate process of human mtDNA replication requires the coordinated action of both transcription and replication machineries. Transcription and replication events at the lagging strand of mtDNA prompt the formation of a stem-loop structure (OriL) and the synthesis of a ∼25 nt RNA primer by mitochondrial RNA polymerase (mtRNAP). The mechanisms by which mtRNAP recognizes OriL, initiates transcription, and transfers the primer to the replisome are poorly understood. We found that transcription initiation at OriL involves slippage of the nascent transcript. The transcript slippage is essential for initiation complex stability and its ability to translocate the mitochondrial DNA polymerase gamma, PolG, which pre-binds to OriL, downstream of the replication origin thus allowing for the primer synthesis. Our data suggest the primosome assembly at OriL-a complex of mtRNAP and PolG-can efficiently generate the primer, transfer it to the replisome, and protect it from degradation by mitochondrial endonucleases.


Assuntos
Replicação do DNA , DNA Mitocondrial , Mitocôndrias/genética , Origem de Replicação , Iniciação da Transcrição Genética , Sequência de Bases , DNA Mitocondrial/química , DNA Mitocondrial/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Conformação Molecular , Conformação de Ácido Nucleico , RNA/química , RNA/genética , Relação Estrutura-Atividade
5.
Methods Mol Biol ; 2192: 35-41, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33230763

RESUMO

In vitro assay based on a reconstituted mitochondrial transcription system serves as a method of choice to probe the functional importance of proteins and their structural motifs. Here we describe protocols for transcription assays designed to probe activity of the human mitochondrial RNA polymerase and the transcription initiation complex using RNA-DNA scaffold and synthetic promoter templates.


Assuntos
RNA Polimerases Dirigidas por DNA/química , Mitocôndrias/metabolismo , Transcrição Gênica , DNA Mitocondrial/química , DNA Mitocondrial/genética , Proteínas de Ligação a DNA/química , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Técnicas In Vitro , Metiltransferases/química , Proteínas Mitocondriais/química , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição/química
6.
Int Immunopharmacol ; 54: 78-85, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29107864

RESUMO

Recent studies have shown that neuroinflammation plays an important role in Alzheimer's disease (AD). Microglial cells are responsible for the phagocytosis of Amyloid-ß (Aß). However, it has been demonstrated that in AD patients the efficiency of phagocytosis decreases due to proinflammatory cytokines, such as Interleukin-1ß (IL-1ß), which is produced through the activation of NLRP3 inflammasome. In this study, we aimed at deciphering the mechanism underlying the NLRP3 activation. The results showed that Aß induces an increase in the level of reactive oxygen species (ROS). According to this study, ROS produced from both mitochondria and NADPH oxidase was responsible for NLRP3 activation. In addition, it was observed that this high level of ROS activated the transient receptor potential melastatin 2 (TRPM2) channel, which causes an increase in the level of intracellular calcium. The results demonstrated that in the absence of intracellular calcium, caspase-1 cannot be activated and therefore the level of IL-1ß decreases. Altogether, our findings supported the role of TRPM2 channel in ROS-induced NLRP3 activation in microglial cells through the exposure to Aß.


Assuntos
Doença de Alzheimer/imunologia , Peptídeos beta-Amiloides/imunologia , Inflamassomos/metabolismo , Mitocôndrias/metabolismo , Inflamação Neurogênica/imunologia , Neuroglia/fisiologia , Fragmentos de Peptídeos/imunologia , Canais de Cátion TRPM/metabolismo , Animais , Cálcio/metabolismo , Caspase 1/metabolismo , Células Cultivadas , Citofagocitose , Modelos Animais de Doenças , Humanos , Interleucina-1beta/metabolismo , Ratos , Ratos Endogâmicos , Espécies Reativas de Oxigênio/metabolismo
7.
Cell ; 171(5): 1072-1081.e10, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29149603

RESUMO

Transcription in human mitochondria is driven by a single-subunit, factor-dependent RNA polymerase (mtRNAP). Despite its critical role in both expression and replication of the mitochondrial genome, transcription initiation by mtRNAP remains poorly understood. Here, we report crystal structures of human mitochondrial transcription initiation complexes assembled on both light and heavy strand promoters. The structures reveal how transcription factors TFAM and TFB2M assist mtRNAP to achieve promoter-dependent initiation. TFAM tethers the N-terminal region of mtRNAP to recruit the polymerase to the promoter whereas TFB2M induces structural changes in mtRNAP to enable promoter opening and trapping of the DNA non-template strand. Structural comparisons demonstrate that the initiation mechanism in mitochondria is distinct from that in the well-studied nuclear, bacterial, or bacteriophage transcription systems but that similarities are found on the topological and conceptual level. These results provide a framework for studying the regulation of gene expression and DNA replication in mitochondria.


Assuntos
DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/química , Metiltransferases/química , Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Fatores de Transcrição/química , Iniciação da Transcrição Genética , Sequência de Aminoácidos , Bacteriófago T7/enzimologia , Bacteriófago T7/metabolismo , DNA Mitocondrial/química , Proteínas de Ligação a DNA/isolamento & purificação , Proteínas de Ligação a DNA/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação da Expressão Gênica , Humanos , Metiltransferases/isolamento & purificação , Metiltransferases/metabolismo , Mitocôndrias/genética , Proteínas Mitocondriais/isolamento & purificação , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Complexos Multiproteicos/química , Regiões Promotoras Genéticas , Alinhamento de Sequência , Fatores de Transcrição/isolamento & purificação , Fatores de Transcrição/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...